
Policy Iteration on the GPU

Mustafa Can Aydin

A DISSERTATION

Submitted to

The University of Liverpool

in partial fulfilment of the requirements
for the degree of

MASTER OF SCIENCE

Student Declaration

I confirm that I have read and understood the University’s Academic Integrity Policy.
I confirm that I have acted honestly, ethically and professionally in conduct leading to as-

sessment for the program of study.
I confirm that I have not copied material from another source nor committed plagiarism

nor fabricated data when completing the attached piece of work. I confirm that I have not
previously presented the work or part thereof for assessment for another University of Liverpool
module. I confirm that I have not copied material from another source, nor colluded with any
other student in the preparation and production of this work.

I confirm that I have not incorporated into this assignment material that has been submitted
by me or any other person in support of a successful application for a degree of this or any other
university or degree-awarding body.

SIGNATURE ______________________________________

DATE September 12, 2025

Acknowledgements

This work made use of the Barkla High Performance Computing facilities at the University of
Liverpool[28]. In addition, several figures in this dissertation were generated using the TikZ

library [27].

Policy Iteration on the GPU

iii

Abstract

Markov Decision Processes (MDPs) are the mathematical backbone of sequential decision-
making under uncertainty, with policy iteration among the fastest exact algorithms for solving
them. However, as real-world state spaces grow to millions of states, traditional CPU implemen-
tations become prohibitively slow. This project aims to address that limitation by designing and
implementing a parallelized version of policy iteration optimized for modern NVIDIA-class GPUs
using CUDA. A single-threaded C++ reference implementation will serve as a performance base-
line, while the GPU variant will utilize optimized linear algebra and parallel reduction strategies
to accelerate both policy evaluation and improvement stages. Experimental evaluations will be
conducted to quantify performance gains across a broad range of problem instances, allowing
flexibility in the choice of environments and data representations. We will measure numerical cor-
rectness (Bellman residuals < 10−5) and benchmark wall-clock performance, targeting 10–100×

acceleration over the CPU baseline. The project also explores the sensitivity of speed-ups to
discount factors and sparsity. Deliverables include fully documented source code, a reproducible
command-line tool, a comprehensive evaluation report, and a dissertation reflecting on perfor-
mance trade-offs. This work aims to provide an GPU policy iteration framework valuable to the
reinforcement learning and operations research communities.

i

0.1 Statement of ethical compliance: A0

Data Category: A

Participant Category: 0

I confirm that I have read the ethical guidelines and will follow them throughout this project.
I will not use any human participants or personal data at any stage of the project. The

project relies solely on synthetic benchmark data for testing and evaluation purposes:

• Data Source: Synthetic datasets.

• Evaluation: Performed using non-human data only.

ii

Contents

0.1 Statement of ethical compliance: A0 . ii

1 Introduction 1
1.1 Scope . 1
1.2 Problem Statement . 1
1.3 Approach . 1
1.4 Expected Outcomes . 2

2 Background 3
2.1 Theoretical Foundations . 3

2.1.1 Markov Decision Processes . 3
2.1.2 Solving Markov Decision Processes With Policy Iteration 4
2.1.3 Parallel Computing and GPU Programming 5

2.2 Cuda Programming Model . 7
2.3 State of the Art: GPU-Accelerated Policy Iteration for MDPs 9

2.3.1 Introduction . 9
2.3.2 GPU vs. CPU Performance for Value/Policy Iteration 9
2.3.3 Influence of MDP Structure on GPU Efficiency 9
2.3.4 Scaling Out: Multi-GPU and Distributed Solutions 10
2.3.5 Other Solution Methods (Beyond Policy Iteration) 11
2.3.6 Benchmarking Practices and Reporting Norms 12
2.3.7 Conclusion . 12

3 Design 14
3.1 Solving Policy Iteration via GPU Acceleration . 14
3.2 Analyzing Policy Iteration on the GPU . 15
3.3 Parallelization Strategy . 15
3.4 Why CSR format is chosen? . 15

3.4.1 What is CSR format? . 16
3.4.2 What are the advantages of CSR format? 17

3.5 Rationale for Design Choices . 17
3.5.1 Why sparse grid worlds instead of dense ones? 17
3.5.2 Why Jacobi Sweeps instead of Gauss-Seidel? 17
3.5.3 Why both cuSPARSE and custom kernels implemented and compared? . 18
3.5.4 Trade-offs: load balancing, memory traffic, and scalability 18

3.6 Summary . 18

4 Implementation 19
4.1 Technology Stack . 19
4.2 Implementation through Plain Cuda . 19

4.2.1 Policy evaluation . 20
4.2.2 Policy improvement . 20

iii

4.3 Implementation through cuSparse . 21
4.3.1 Policy evaluation (projected SpMV) . 21
4.3.2 Policy improvement . 21
4.3.3 Convergence check and housekeeping . 21

5 Evaluation 23
5.1 Hardware Used . 23
5.2 Data Used in Evaluation . 23

5.2.1 Correctness Test Configurations . 23
5.2.2 Performance Test Configurations . 24

5.3 Performance Results . 25
5.3.1 Interpretation of speed-ups using cuSparse vs plain cuda 26

5.4 Performance Comparison Between Different GPUs 27
5.5 Performance Gains Through cuSparse . 28
5.6 Performance Trade-offs . 29
5.7 Limitations . 30
5.8 Future Improvements . 30

5.8.1 Multi GPU Support . 30
5.8.2 Comparison with parallel CPU implementations 31
5.8.3 Testing on more diverse and larger datasets 31
5.8.4 Testing with different types of GPUs . 31

6 BCS Criteria and Self-Reflection 32
6.1 BCS Project Criteria . 32

6.1.1 Application of Practical and Analytical Skills 32
6.1.2 Innovation and Creativity . 32
6.1.3 Synthesis and Evaluation . 32

6.2 Self Reflection . 32

A Implementation Details 36
A.1 CSR Input Format . 36
A.2 CSR vs Dense Storage Comparison . 36

B GPU Architecture Notes 38
B.1 Write–After–Read Hazards . 38

C Experimental Setup 39
C.1 Barkla Slurm Scripts . 39

D Results and Validation 41
D.1 Example Outputs . 41

D.1.1 Data Output . 41
D.1.2 Performance Output . 41

D.2 Correctness Check Script for CUDA and Serial Outputs 41

iv

List of Abbreviations

CSR Compressed Sparse Row
CLI Command Line Interface
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
GPU Graphics Processing Unit
MDP Markov Decision Process
PI Policy Iteration
VI Value Iteration
SpMV Sparse Matrix–Vector multiplication
SPMV-CSR Sparse Matrix–Vector multiplication using Compressed Sparse Row format
LP Linear Programming
DRAM Dynamic Random-Access Memory
NVLink NVIDIA Link (high-speed GPU interconnect)
NVSwitch NVIDIA Switch (scalable GPU interconnect)
NCCL NVIDIA Collective Communications Library
MPI Message Passing Interface
OpenMP Open Multi-Processing
SIMD Single Instruction, Multiple Data
SIMT Single Instruction, Multiple Threads
BFS Breadth-First Search
MCTS Monte Carlo Tree Search
AO* A-star (A*) Search
LAO* Labeled A-star (LAO*) Search
DQN Deep Q-Network
AMD Advanced Micro Devices
HBM High Bandwidth Memory
GDDR Graphics Double Data Rate
HBM2 High Bandwidth Memory 2
RL Reinforcement Learning
DRL Deep Reinforcement Learning
DP Dynamic Programming
MB Megabyte
GB Gigabyte
TD Temporal Difference
cuSPARSE CUDA Sparse Matrix Library
BLAS Basic Linear Algebra Subprograms
ML Machine Learning
Intel MKL Intel Math Kernel Library
PETSc Portable, Extensible Toolkit for Scientific Computation
SM Streaming Multiprocessor

v

FP32 32-bit Floating Point
FP64 64-bit Floating Point
GFLOPS Giga Floating Point Operations Per Second
FLOPS Floating Point Operations Per Second
L1, L2, L3 Cache Levels 1, 2, and 3 CPU Cache
SMEM Shared Memory (on GPU)
nnz Number of Non-Zeros (in a matrix)
RTX Ray Tracing Texel eXtreme (NVIDIA GPU series)
Tesla T4 NVIDIA Tesla T4 GPU
Tesla V100 NVIDIA Tesla V100 GPU
NVIDIA L40S NVIDIA L40S GPU
NVIDIA L4 NVIDIA L4 GPU
NVIDIA H100 NVIDIA H100 GPU
AWS Amazon Web Services
HYB Format Hybrid format (it combines two sparse matrix storage formats)
3D Three-Dimensional
axpy the operation y → a ∗ x+ y

TPU Tensor Processing Unit
comm-bound Communication-bound
UCT Upper Confidence Bound for Trees

vi

List of Figures

2.1 Markov Decision Process (MDP) illustrating states, actions, transitions, and re-
wards. 3

2.2 Policy Iteration Algorithm Flowchart . 4
2.3 CUDA hierarchy: Grid → Blocks → Threads. Each block here shows a tile of

threads sharing block-local resources (shared memory, sync) [20]. 6
2.4 CUDA memory model: hierarchical memory spaces with different visibility and

latency trade-offs. 6
2.5 CUDA device memory types, their scope, and typical latency characteristics. . . . 8

3.1 Dense representations of the transition and reward matrices for a small MDP
with S = 3 states and A = 2 actions. Each row r = s · A + a corresponds to a
state-action pair. 17

4.1 Flow of the overall architecture showing the interaction between CPU and GPU
during Policy Iteration. 19

4.2 GPU Parallelization Strategy for Policy Evaluation 20
4.3 GPU Parallelization Strategy for Policy Improvement 20
4.4 GPU Parallelization Strategy for Policy Iteration with cuSPARSE.

The construction of projected CSR Pπ and reward rπ (A) is followed by Jacobi policy

evaluation sweeps (B) using cuSPARSE SpMV, then policy improvement (C), and a

convergence check with housekeeping (D). Legend at top. 22

5.1 Policy Iteration times (log scale) for different numbers of states and actions. . . . 26
5.2 Policy Iteration Speedups for cuda and cuSPARSE cuda implementations com-

pared to CPU for different datasets. 26
5.3 Policy Iteration times (log scale) using GPUs compared to CPU for different

numbers of states and actions. 27
5.4 Policy Iteration speedups using GPUs compared to CPU for different numbers of

states and actions. 28

vii

List of Tables

3.1 CSR arrays for a small MDP stored by state–action rows. 16
3.2 Per-row map (successor lists are shown as (s′, P, R) tuples). 16

5.1 System CPU Specifications . 23
5.2 Comparison of NVIDIA L40S, V100, L4, and H100 GPUs on Barkla, showing

actual memory sizes and power caps from nvidia-smi. 23
5.3 Correctness Test MDP . 24
5.4 Performance Test MDPs . 24
5.5 Performance results for the different implementations of the policy iteration al-

gorithm. The values represent the time taken in milliseconds to compute the
optimal policy and value function for each MDP size. 25

5.6 Performance results for the different implementations of the policy iteration al-
gorithm. The values represent the time taken in milliseconds to compute the
optimal policy and value function for each MDP size. 25

5.7 Runtime results for the different implementations of the policy iteration algo-
rithm. The values represent the time taken in milliseconds to compute the optimal
policy and value function for each MDP size. 27

5.8 Speedup (Serial ÷ GPU runtime) for different GPUs across MDP sizes. 27

viii

Chapter 1

Introduction

1.1 Scope

This project accelerates policy iteration for finite-state Markov Decision Processes (MDPs) by
exploiting data-parallel hardware on modern NVIDIA GPUs. We design, implement, and bench-
mark a CUDA-based policy–iteration solver against a single-threaded CPU baseline across syn-
thetic and benchmark MDPs. Problem instances vary in size, structure, and sparsity—from
compact environments with thousands of states to highly sparse models with millions of states.

1.2 Problem Statement

Policy iteration switches between policy evaluation and policy improvement. Our method uses a
modified variant of policy iteration, where policy evaluation relies on synchronous Jacobi sweeps
until a convergence tolerance is reached, instead of solving the linear system exactly. Let Tπ

denote the Bellman expectation operator

(TπV)(s) =
∑

s′

Pπ(s, s
′)
(

Rπ(s, s
′) + γ V (s′)

)

.

Given a policy ε, Jacobi updates are

V (k+1) = TπV
(k), stop when ↔V (k+1) − V (k)↔∞ < θ or k ≥ Kmax.

Although policy iteration typically converges in tens of outer iterations, dense CPU approaches
become impractical beyond S≈105 due to the O(S2) memory and poor parallel efficiency of dense
kernels. The challenge is to map Jacobi-based evaluation and greedy improvement efficiently to
GPUs—maximizing bandwidth utilization on sparse data while preserving numerical correctness.

1.3 Approach

We model transition dynamics and rewards with sparse matrices in Compressed Sparse Row
(CSR) format. For a fixed policy, each Jacobi sweep reduces to one CSR SpMV(Sparse Ma-
trix–Vector multiplication) and a parallel $∞ reduction:

V (k+1) = TπV
(k) ⇐⇒ CSR–SpMV over rows of Pπ plus a max-reduction on |V (k+1)−V (k)|.

Synchronous Jacobi is well suited to GPUs: rows update independently (no write–after–read
hazards see Appendix B.1), avoiding atomics and enabling one-thread/warp-per-row kernels
with coalesced reads of CSR data. Policy improvement is parallelized statewise by evaluating
Q(s, a) over each action’s outgoing nonzeros and selecting argmaxaQ(s, a). Benchmarks span

1

sizes and sparsity patterns; metrics include Bellman residuals, sweeps per evaluation, outer
iterations, and wall-clock time. The implementation is in modern C++20 and CUDA, with
fixed seeds and scripts with configuration information for reproducibility.

1.4 Expected Outcomes

We deliver a CUDA/C++ implementation of modified policy iteration with one CPU back end
and two GPU back ends, together with performance results on six datasets that vary in size
and sparsity. The analysis focuses on the main computational kernels, namely CSR SpMV,
greedy selection, and parallel reductions, and examines how dataset characteristics influence
overall performance. We conclude with an evaluation across multiple GPUs with distinct archi-
tectural features, showing how these differences affect speedups. Finally, we compare the use of
cuSPARSE provided kernels with a custom policy evaluation kernel, highlighting the tradeoffs
between relying on optimized library routines and hand written implementations.

2

Chapter 2

Background

2.1 Theoretical Foundations

2.1.1 Markov Decision Processes

A MDP, illustrated in figure2.1, is a mathematical tool for capturing sequential decision making
problems in which outcomes are in part under the control of an agent and in part subject to
randomness [26, 23, 9]. Formally, an MDP is defined by a quintuple M = (S,A, P,R, γ), where
S denotes the set of states which represents the possible contexts of the environment, and A

denotes the set of actions available to the agent. The transition dynamics are captured by the
probability distribution P (s′ | s, a), which specifies the likelihood of reaching a successor state
s′ given that action a is taken in state s. Associated with each transition is a reward function
R(s, a, s′) ∈ R that assigns an immediate payoff, and a discount factor 0 ≤ γ < 1 that weighs
the relative importance of future versus immediate rewards.

Figure 2.1: Markov Decision Process (MDP) illustrating states, actions, transitions, and rewards.

The fundamental assumption that underpins MDPs is the Markov property, which states
that the process’s future depends solely on its current state and action, not on the sequence of
states and actions that preceded it. For example, in a gridworld domain, if the agent is located
in the middle of the grid, the next state and its value depend only on that current position and
chosen action, not on the path the agent took to reach the middle. The behavior of an agent
is captured by its policy, ε, which maps each state either deterministically to a single action
ε(s) = a or stochastically to a distribution over actions ε(a | s).

To evaluate the quality of a policy, one considers value functions. The state-value function
V π(s) represents the expected discounted return when starting from state s and following policy
ε thereafter. The action-value function Qπ(s, a) represents the expected return when starting
from state s, taking action a, and then continuing with ε[26]. The objective of solving an MDP
is to determine an optimal policy ε∗ that maximizes the expected return over time. Classical
solution methods include dynamic programming(DP) techniques such as value iteration and

3

policy iteration, which exploit the recursive Bellman equations[23], while in scenarios where the
transition dynamics are unknown, reinforcement learning(RL) methods such as Q-learning or
deep reinforcement learning(DRL) are employed [16].

MDPs form the theoretical foundation of much of reinforcement learning and have appli-
cations across robotics, operations research, economics, and artificial intelligence, where agents
must learn to act optimally in uncertain and dynamic environments.

2.1.2 Solving Markov Decision Processes With Policy Iteration

One of the classical approaches to solving MDPs is policy iteration[9, 23]. This method seeks to
compute an optimal policy ε∗ that maximizes the expected discounted return over time. The
procedure relies on two key steps that are repeated iteratively: policy evaluation and policy
improvement.

In the evaluation step, the value function V π corresponding to the current policy ε is com-
puted. Formally, V π(s) satisfies the recursive Bellman equation

V π(s) =
∑

a∈A

ε(a | s)
∑

s′∈S

P (s′ | s, a)
(

R(s, a, s′) + γV π(s′)
)

,

for all s ∈ S. In practice, this system of equations is typically solved iteratively, for instance
with Jacobi or Gauss–Seidel style updates, until convergence within a small tolerance[23].

Once the value function of the existing policy has been approximated, the policy improvement
is done. Here, the decision rule of the agent is improved by choosing, for every state, the
action that maximizes the expected return given the approximated values of the successor states.
Concretely, the improved policy is defined as

ε′(s) = argmax
a∈A

∑

s′∈S

P (s′ | s, a)
(

R(s, a, s′) + γV π(s′)
)

.

If the new policy ε′ is identical to the old one, then the algorithm has converged and ε is optimal.
Otherwise, ε is replaced by ε′ and the cycle of evaluation and improvement continues which is
shown in the figure2.2.

Start

Initialize policy ε

Policy evaluation
(solve V π approximately/exactly)

Policy improvement
(ε′ → argmaxa

∑

s
′ P (·) [R+ γV π])

Policy changed?

Optimal

No

Yes

Figure 2.2: Policy Iteration Algorithm Flowchart

4

As shown in Algorithm 1, policy iteration switches between policy evaluation and policy
improvement until convergence.

Algorithm 1 Policy Iteration for a Discounted MDP

Require: State set S, action set A, transition model P (s′ | s, a), reward R(s, a, s′), discount
0 ≤ γ < 1, evaluation tolerance θ > 0

1: Initialize a policy ε arbitrarily (e.g., choose any action in each s ∈ S)
2: Initialize V (s)→ 0 for all s ∈ S

3: repeat
4: V → PolicyEvaluation(ε, V, θ) % Iterative evaluation to tolerance
5: policyStable→ true
6: for s ∈ S do
7: aold → ε(s)
8: Compute the action-values under V :

Q(s, a)→
∑

s′∈S

P (s′ | s, a)
(

R(s, a, s′) + γ V (s′)
)

∀a ∈ A

9: ε(s)→ argmaxa∈AQ(s, a) % Greedy improvement (deterministic)
10: if ε(s) -= aold then
11: policyStable→ false
12: end if
13: end for
14: until policyStable
15: return (ε, V)

The theoretical foundation of policy iteration is strong: it is guaranteed to converge to an
optimal policy in a finite number of iterations given that the state and action spaces are finite[23].

In addition to that, it typically converges faster than value iteration alone because the
policy is updated after each round of evaluation. The policy evaluation, however, can be costly,
especially in large problems where exactly solving the value function is not possible. In such
cases, approximate policy iteration methods are employed, wherein the process of evaluation is
truncated after a certain specified number of iterations or replaced with approximate solutions
such as Monte Carlo estimation or TD learning[26, 8].

Policy iteration is therefore caught in between theoretical guarantee and practical perfor-
mance. It is a corner stone algorithm in reinforcement learning and dynamic programming, and
a foundation for more complex techniques that balance exact DP techniques with approximate
function approximations and modern-day GPU acceleration.

2.1.3 Parallel Computing and GPU Programming

Modern computational problems, particularly those involving enormous data or complex models,
typically exceed sequential processing on a single CPU core.

Parallel computing avoids such constraint by dividing work into many processing elements
that can run concurrently[6].

The fundamental concept is to divide a problem into multiple subproblems, assign them
to different processors, and coordinate their computation so overall performance is improved.
The benefits of parallelism are typically measured by speedup, parallel to serial runtime ratio,
and efficiency, the ratio of resources utilized effectively. It is nonetheless difficult to achieve
high performance because it entails a careful control of workload, memory access patterns,
and synchronization. Among the most popular parallel computing architectures are GPUs.

5

Originally designed to accelerate computer graphics, GPUs are now highly programmable multi
core processors for general purpose scientific and engineering computation[22, 10].

As opposed to CPUs, that are optimized for low-latency processing of sequential instruc-
tions, GPUs are optimized for high-throughput processing of massively parallel workloads. This
renders them particularly well-suited to problems that are tractable as a description in terms of
enormous numbers of independent or weakly interacting operations, i.e., linear algebra, simu-
lations, and machine learning[4, 13]. GPU programming is based on a different paradigm than
conventional CPU programming. One of the dominant programming models is NVIDIA’s CUDA,
which allows developers to write GPU kernels which are functions executed in parallel by many
lightweight threads [17]. Threads are organized hierarchically into blocks and grids(illustrated in
figure2.3), and their execution is coordinated by the GPU hardware. The memory hierarchy is
another central aspect: GPUs provide several types of memory, including global memory, shared
memory, registers, and texture memory, each with different capacity, latency, and bandwidth
characteristics(illustrated in figure2.4). Efficient GPU programs carefully exploit this hierarchy,
maximizing memory coalescing and minimizing data transfers between the host CPU and device
memory[10].

Figure 2.3: CUDA hierarchy: Grid→ Blocks→ Threads. Each block here shows a tile of threads
sharing block-local resources (shared memory, sync) [20].

CUDA Grid (multiple blocks)

Block (0,0) Block (1,0)

Block (0,1) Block (1,1)

Thread in block (0,0)

threadIdx = (x, y)

blockIdx = (bx, by)

Global Memory(DRAM, visible to all threads)

Constant & Texture(cached, read-mostly)

Shared Memory(per-block, low latency)

Registers(per-thread, fastest)

Shared memory (block-local)
Registers (per-thread)

Execution model: A kernel launch instantiates a grid of blocks, each with many threads.
Indices: blockIdx, threadIdx select a thread’s portion of work.
Memory: Global → all threads; Constant/Texture → cached reads; Shared → per-block scratchpad; Registers → per-thread.
Performance tips: coalesced global loads, minimize divergence within a warp, reuse data via shared memory.

Figure 2.4: CUDA memory model: hierarchical memory spaces with different visibility and
latency trade-offs.

6

Despite their high computational throughput, GPUs pose challenges in terms of algorithm
design and implementation. Not all problems are naturally parallel, and overheads such as
synchronization and communication can diminish the potential gains. Furthermore, the ef-
fectiveness of a GPU implementation is often determined less by raw arithmetic performance
and more by how well the algorithm leverages the underlying memory system. Nevertheless,
for algorithms that map well to the GPU model, such as sparse matrix–vector multiplication,
convolutional operations, or Monte Carlo simulations, the performance gains can be orders of
magnitude compared to CPU execution [21, 30, 14, 3, 13].

The relevance of GPU programming to MDPs lies in the fact that their solution methods
often reduce to large-scale linear algebra operations or iterative sweeps over state–action spaces.
These operations are amenable to fine-grained parallelism, where each thread is responsible
for computing contributions from a subset of states, actions, or transitions. Harnessing GPUs
therefore enables the scaling of classical algorithms such as policy iteration to problem sizes that
would be infeasible on conventional CPU hardware.

2.2 Cuda Programming Model

CUDA is NVIDIA’s parallel computing platform, consisting of GPU hardware, a compiler
toolchain, drivers, a runtime environment, and optimized libraries, together with a language
based on extensions to C++. This combination enables developers to exploit the massive paral-
lelism of modern GPUs for general-purpose computation.[17, 22]. While GPUs were originally
designed for graphics rendering, CUDA exposes them as programmable many core processors,
allowing applications far beyond graphics, including scientific simulation, machine learning, and
the solution of large-scale MDPs[4, 13].

The CUDA programming model is built around the concept of kernels, which are functions
written in CUDA C++, an extension of C++ with GPU-specific keywords, built-in variables,
and a dedicated kernel launch syntax[20]. Kernels are executed on the GPU by many lightweight
threads in parallel. When a kernel is launched, it is instantiated across a grid of thread blocks.
Each block contains a fixed number of threads, and together the blocks form a grid that spans
the problem domain. Threads within a block are identified by their thread indices, and blocks
within a grid are identified by block indices. Using these indices, each thread can compute a
unique subset of the overall workload. This two-level hierarchy (grid–block–thread) provides
both scalability and flexibility: small problems can use few blocks, while large problems can
span thousands of blocks and millions of threads[10].

A simple illustration is a vector addition kernel, where each thread computes one element
of the output, is shown in the listing2.1. Then the kernel is launched with a specified grid and
block dimension, as shown in the listing2.2.

Listing 2.1: Example Cuda Kernel to add vectors

1 __global__ void vector_add(const float *xVec ,
2 const float *yVec ,
3 float *zVec ,
4 int N) {
5 int idx = blockIdx.x * blockDim.x + threadIdx.x;
6 if (idx < N) {
7 zVec[idx] = xVec[idx] + yVec[idx];
8 }
9 }

Listing 2.2: CUDA C++ Kernel Launch Syntax Example

1 vector_add <<<gridDim , blockDim >>>(xVec , yVec , zVec , N);

7

In the listing2.1, the __global__ qualifier is an example of cuda C++ syntax to indicate kernels
and <<< . . . >>> syntax shown in listing2.2 is the kernel launch syntax. In this example,
CUDA creates gridDim blocks, each with blockDim threads. Together these threads cover all
N elements of the vectors. Each thread computes a unique index idx from its block and thread
indices, ensuring that the workload is distributed across the GPU.

Underlying this execution model is a hierarchical memory system. Global memory is held
in device DRAM and is shared by all threads, but has high latency and low bandwidth per
thread. Shared memory, however, is on-chip and shared by all threads of a block, and has
much lower latency and accommodates cooperative computation. Additionally, there is access
by each thread to private registers, which have the fastest storage space but are limited. Optimal
CUDA programs minimize slow global memory accesses through careful data layout, memory
coalescing, and the use of shared memory for intermediate results. CUDA also offers constant
and texture memories, optimized for distinct access patterns[10, 17]. CUDA device memory
types are illustrated in Figure 2.5.

Thread execution is then structured into warp groups, of which there are typically 32 threads
running in lockstep on a single multiprocessor. Execution by warps has performance conse-
quences: when threads within a warp diverge (for example, by following different branches of an
if statement), the GPU will need to serialize their execution, and throughput will suffer. Con-
sequently, branch divergence is a key design point when designing CUDA kernels. Occupancy
is also something to consider, and it can be described as the number of active warps divided by
the amount that the hardware will allow. Better occupancy helps to hide memory latency by
keeping some warps around to execute at all times[10].

Per Thread
Per Block

Device-Wide

Registers
(fastest, on-chip)

Local Memory
(per-thread spill, in DRAM)

Shared Memory (SMEM)
(on-chip, low latency)

Global Memory (DRAM)
(large capacity, high latency)

Constant Memory
(read-only, cached, broadcast-friendly)

Texture / Read-Only Data Cache
(read-only, spatially cached)

L2 Cache
(shared across SMs)

L1 / SMEM Cache (per-SM)

Scope: Per Thread (private), Per Block (shared within a block), Device-Wide (visible to all).
Typical latency (fast → slow): Registers → Shared (SMEM) → L1 → L2 → Global/Local.
Read-only spaces: Constant (broadcast-efficient), Texture/RO cache (spatial locality).
Notes: Local memory lives in DRAM (used on register spill). Some architectures unify L1 and SMEM.

visible only to one thread

visible to threads in the same block

visible to all threads on device

Figure 2.5: CUDA device memory types, their scope, and typical latency characteristics.

Programming in CUDA thus requires both algorithmic and architectural awareness. On the
one hand, the algorithm must be decomposed into fine-grained independent tasks that can be
executed by thousands of threads. On the other hand, the implementation must align with
the GPU’s hierarchical execution model and memory hierarchy to achieve high efficiency. For
example, sparse matrix–vector multiplication, a common primitive in solving MDPs, is naturally
parallelizable since each row of the matrix can be processed independently. By mapping rows
to blocks and nonzero entries to threads, one can leverage CUDA’s massive parallelism while
exploiting shared memory for local reductions[3, 21].

Briefly, the CUDA programming model combines a hierarchical thread organization, a mul-
tilevel memory system, and warp based execution semantics. It provides abstraction as well as

8

control to compile computationally intensive algorithms into highly parallel GPU-based code.
This makes CUDA suitable for accelerating DP algorithms such as PI, where an analogous pat-
tern of computation needs to be performed numerous times over enormous state and action
spaces[30, 14].

2.3 State of the Art: GPU-Accelerated Policy Iteration for MDPs

2.3.1 Introduction

GPU-accelerated dynamic programming has transformed how large MDPs are solved, especially
in reinforcement learning (RL) contexts where planning algorithms like Value Iteration (VI)
and Policy Iteration (PI) can become a bottleneck. By exploiting massive parallelism, modern
GPUs achieve dramatic speedups over traditional CPU implementations in computing Bellman
updates for large state spaces. Below, we review the state of the art developments in GPU
based policy iteration, focusing on performance benchmarks (vs. CPU) in subsection2.3.2, the
effects of MDP structure on efficiency in subsection2.3.3, multi-GPU scaling in subsection2.3.4,
and comparisons to other solution methods in subsection2.3.5. We also discuss best practices in
reporting performance metrics in subsection2.3.6.

2.3.2 GPU vs. CPU Performance for Value/Policy Iteration

Many studies report that GPUs outperform single-threaded CPU implementations of VI/PI by
one to two orders of magnitude (or more) on sizable MDPs. For example, a recent Julia-based
solver achieved “speed-ups of various orders of magnitude on the larger systems” when using a
GPU, compared to existing sequential (CPU) tools[15]. In practical terms, this often translates
to 10×–100× faster run-times, and in some cases much higher:

One experiment solved MDPs up to ∼ 1 million states on GPUs (e.g. NVIDIA 1080Ti, RTX
8000, V100), yielding 20× to 1000× speedups over a serial Intel Xeon CPU baseline [4]. The
GPU implementation could solve a million-state MDP in under 30 seconds, whereas the CPU
took orders of magnitude longer [4]. Chowdhury et al. (2022) likewise report orders-of-magnitude
GPU speedups for a planning workload in stochastic flows, consistent with the trends seen for
VI/PI [2].

A 2015 GPU-based MDP solver for crowd simulation found massive gains: e.g. up to 90×
faster than an 8-thread Intel CPU on an “office” gridworld, and up to 820× faster on a larger maze
scenario [24]. Even against an ARM CPU, speedups reached 2000×+ in some cases [24]. Such
results highlight that GPUs can replace dozens or hundreds of CPU cores for MDP planning.

It should be noted that these speedups assume a single-thread (or limited-thread) CPU base-
line. Multi-core CPU implementations such as OpenMP or MPI can narrow the gap somewhat,
but GPUs still usually win on throughput. In summary, the literature consistently shows GPU
VI/PI outperforming CPUs by 1-2 orders of magnitude on large problems[15, 4], making real-
time or interactive planning feasible in domains that were previously intractable with CPU-only
methods.

2.3.3 Influence of MDP Structure on GPU Efficiency

The performance benefit of GPU acceleration can vary depending on the structure and sparsity
pattern of the MDP’s state-transition graph:

Regular structures like gridworlds are highly GPU-friendly. States have a uniform number of
neighbors and memory access patterns are predictable, which enables coalesced memory accesses
on GPU. As a result, these problems achieve higher utilization of GPU memory bandwidth and
compute units. For instance, in a classic study of sparse matrix-vector multiply (analogous to
Bellman updates), a structured 3D grid delivered ∼ 16 GFLOPs on an NVIDIA GPU versus

9

∼ 10 GFLOPs for an unstructured mesh [1]. This GPU performance was “more than 10 times
that of a quad-core Intel” system for both cases [1], but the structured case better exploited the
GPU (nearly 60% higher throughput than the irregular case). In practical MDP terms, a regular
grid with uniform transitions achieves the largest GPU speedups, thanks to optimal memory
coalescing and balanced thread workloads.

For MDPs with arbitrary or highly irregular transition structures (e.g. state graphs with
varying out degree or random connectivity), naive GPU implementations suffer from load im-
balance and scattered memory accesses. Each thread may process a different number of suc-
cessors, leading to warp divergence and under utilization of GPU cores. Memory accesses to
the value function can also be random, hurting cache efficiency. However, research shows that
with optimized sparse operations, GPUs still yield significant gains on irregular MDPs. Using
tuned sparse matrix techniques (e.g. CSR formats and warp aggregated loads), one can mitigate
these issues. NVIDIA’s cuSPARSE library, for example, provides optimized routines for sparse
matrix-vector multiplication that handle irregular patterns efficiently.

Bell and Garland (2009)[1] showed that the performance gains from GPU based SpMV de-
pend strongly on the sparsity pattern: in some cases the improvements were only modest, while
in others their HYB format achieved speedups of roughly 5×-15× versus the CPU implementa-
tions.

Empirical results in MDP solvers back up this trend. Ruiz-Loza and Hernández (2015)[24]
reported that in their crowd-simulation benchmarks, the maze scenario (a grid with many wall-
s/obstacles) achieved an ∼ 820× GPU speedup, compared to about 90× in the less structured
office scenario. This highlights how the underlying structure of the state transition graph can
strongly influence GPU performance.

Conversely, completely irregular MDP graphs won’t hit such extreme gains, but optimized
GPU code still handily outperforms CPU (often by an order of magnitude or more). Over-
all, structured MDPs benefit the most, but with careful engineering, irregular MDPs also see
substantial GPU acceleration.

2.3.4 Scaling Out: Multi-GPU and Distributed Solutions

When state spaces become extremely large (or when further speedup is needed), scaling out
across multiple GPUs is the next step. State-of-the-art approaches partition the MDP’s state
space across GPUs and use high-speed interconnects (like NVIDIA NVLink and NVSwitch) to
handle the necessary synchronization of boundary states. The literature indicates that multi-
GPU scaling can be near-linear given that there exist efficient communication between the
GPUs.

Intra-node multi-GPU

Modern GPU servers often integrate 4–8 GPUs via NVLink or NVSwitch, offering roughly
20× ˘50× more bandwidth than PCIe. This high-bandwidth, low-latency interconnect enables
frequent inter GPU communication with reduced penalties. NVIDIA reports near-linear scaling
to four Tesla P100 GPUs on structured HPC benchmarks [18]. Similarly, multi-GPU graph
frameworks such as Lux demonstrate excellent scaling, achieving 20× speedup on 4 GPUs
relative to a high-end CPU server, and up to two orders of magnitude versus a distributed CPU
cluster [31]. These findings suggest that, when communication is carefully managed, multi-GPU
systems can maintain high efficiency as additional GPUs are added.

Distributed GPU clusters

Going beyond one node, NVLink Switch and technologies like NCCL allow extending this model
across multiple nodes (each with several GPUs), creating a cluster of GPUs that communicate

10

in a peer-to-peer fashion. With careful partitioning of the state graph (minimizing cross-node
edges) and asynchronous communication, near-linear scaling can extend to multi-node clusters as
well. Researchers have demonstrated large-scale graph algorithms (like BFS or PageRank) run-
ning on GPU clusters with strong scaling, the key is that GPUs have such high compute/memory
throughput that even if communication is nontrivial, they often remain compute-bound rather
than comm-bound for reasonably balanced partitions. In the context of MDP value iteration,
this means one can solve truly enormous MDPs by spreading states over, say, 16 or 32 GPUs,
achieving almost N-fold speedup with N GPUs in ideal cases.

For reinforcement learning or planning problems that involve billions of states or require
real-time solutions, a multi GPU approach is viable and has been shown to maintain efficiency.
The caveat is that one must use GPUs with fast interconnects (NVSwitch within a node, or
InfiniBand/NVLink between nodes) and design the algorithm to communicate only when neces-
sary (e.g. exchange boundary value data at the end of each iteration). With these best practices,
scaling out is highly effective, and near-linear acceleration across GPUs has been reported for
structured HPC and graph workloads[18].

2.3.5 Other Solution Methods (Beyond Policy Iteration)

While our focus is on classical dynamic programming (PI/VI) on GPUs, it is useful to situate
these planners among alternative approaches to solving or approximating MDPs. Broadly, three
families are most relevant for context: linear–programming (LP) formulations of MDPs, DRL
with function approximation, and heuristic/planning methods such as Monte Carlo Tree Search
(MCTS) or graph–search variants (e.g., AO*, LAO*). These alternatives illuminate when exact
GPU PI/VI is preferable and when approximation or search may be advantageous.

Discounted infinite horizon MDPs admit an equivalent LP in either value or occupancy
measure space, providing strong optimality guarantees and a clean benchmark for theoretical
analysis[23]. However, the practical scalability of general purpose LP solvers on large MDPs is
limited: problem sizes with millions of states translate into extremely large constraint matrices,
and the pivoting/factorization–heavy inner loops are difficult to map efficiently to GPUs at scale.

Even though there is active research on GPU–accelerated LP and first–order methods, in
applied RL and planning the dominant practice for large, sparse problems remains iterative
Bellman schemes (VI/PI) or problem specific decompositions, which better exploit sparsity
patterns and SIMD style parallelism. LP remains valuable in smaller verification settings or
when exact dual certificates are required, but for the kinds of sizable, sparse MDPs considered
here, iterative dynamic programming typically offers a superior compute–to–solution profile.

DRL replaces tabular value functions with neural approximators and learns from data rather
than performing full Bellman backups over the entire state space. Landmark results such as
DQN on Atari established the efficacy of GPU–trained convolutional networks for value esti-
mation from high–dimensional observations[16], while actor–critic and policy–gradient families
extend this to continuous control [26]. In these methods, GPUs accelerate mini–batch gradi-
ent updates, replay–buffer sampling, and large–model training; the computational bottleneck is
stochastic optimization rather than sparse Bellman SpMV. Deep RL scales to problems where
the model is unknown or the state space is effectively unenumerable, but it typically trades
away exact optimality and requires extensive hyperparameter tuning and sample generation.
In contrast, when a reliable model is available and exact planning is desired, GPU–accelerated
PI/VI can deliver deterministic convergence with strong wall clock performance on structured,
sparse problems[15, 4], making the two paradigms complementary rather than competing.

Search–based planners explore only portions of the state space and are effective when heuris-
tics or rollout policies can focus computation on promising regions. Monte Carlo Tree Search
with UCT demonstrated strong performance in large sequential decision problems by balancing
exploration and exploitation through statistical tree growth [12]. AO* and its extension LAO*
adapt best–first search to cyclic MDP graphs, interleaving heuristic expansion with DP style

11

backups on the explored subgraph [7]. These methods, as presented in the literature, do not
rely on GPU acceleration; their contributions lie in search strategies and heuristic guidance.
However, in principle, components such as simulation rollouts, batched heuristic evaluation,
or parallel backup operations could benefit from GPU parallelism if engineered appropriately.
The effectiveness of such parallelization would depend strongly on problem structure, heuristic
quality, and the ability to keep GPU resources well utilized. For large, structured sparse MDPs
(e.g., grid-like domains), bulk synchronous GPU implementations of PI/VI remain a particularly
strong baseline, as they exploit predictable sparsity patterns and map directly to efficient GPU
kernels [1]. In contrast, search based planners broaden the toolbox for settings where exhaustive
dynamic programming is infeasible or undesirable.

In summary, DRL and heuristic search broaden the toolbox for cases where full state dynamic
programming is infeasible or undesirable, whereas GPU accelerated PI/VI excels when the model
is available and exact solutions over large but sparse transition graphs are the target [15].

2.3.6 Benchmarking Practices and Reporting Norms

State of the art empirical studies of GPU MDP solvers emphasize transparent convergence
and throughput reporting so results are reproducible and comparable. Convergence is typically
quantified via a Bellman residual (e.g., maxs |Vk+1(s)−Vk(s)|) or policy stability, with an explicit
tolerance (e.g., < 10−6) and the number of sweeps/iterations to reach it[15]. Wall clock time is
reported alongside iteration counts to separate algorithmic efficiency from raw hardware speed;
many works additionally break down time by major kernels (SpMV, axpy, policy improvement)
and, for multi–GPU experiments, by communication vs. computation.

Problem descriptors, such as |S|, |A|, and total nonzeros (nnz) in the transition representa-
tion are essential to contextualize sparsity and memory traffic [15, 4]. Precision and datatypes
(e.g., FP32 vs. FP64 values and 32–bit indices) are specified because numerical stability and
GPU throughput can vary substantially with precision; some implementations prefer FP64 for
robustness, accepting lower peak FLOPs[15]. Hardware/software details are standard: GPU
model and memory (e.g., V100 32 GB HBM2), CUDA/cuSPARSE versions, and CPU baselines
(cores/threads)[2].

Finally, modern GPU features used to curb overhead—such as asynchronous streams, pinned/-
managed memory, or NVLink/NVSwitch for intra–node scaling—should be disclosed to clarify
where speedups originate and to aid independent replication[18]. Adhering to these norms yields
clear accuracy–throughput tradeoffs and aligns with best practice across recent GPU–accelerated
value/policy–iteration studies[15, 4].

2.3.7 Conclusion

State-of-the-art GPU acceleration has made it feasible to solve large MDPs in reinforcement
learning with unprecedented speed. For policy iteration (and value iteration), GPUs routinely
provide 10×–100× speedups vs. CPU, and even higher in structured domains [15, 24]. The
biggest performance gains come from regular, grid-like MDP structures that align well with GPU
memory access patterns, though even irregular problems see significant benefit with optimized
sparse kernels[1]. Scaling across multiple GPUs further amplifies performance, approaching
linear scaling thanks to fast interconnects[18]. We focused on policy iteration here, but briefly
noted that alternative approaches (DRL, etc.) also leverage GPUs in different ways. Finally,
we highlighted the importance of benchmarking and reporting metrics, including convergence
criteria, iteration counts, wall-clock time, problem sizes, precision, and hardware details, to
adhere to current best practices in the field[15].

Overall, the literature consensus is that GPU-based dynamic programming is a game-changer
for planning in large MDPs, enabling applications in robotics, planning, and RL that were previ-
ously impractical. With the latest hardware (e.g. A100, H100 GPUs) and proper optimizations

12

like cuSPARSE, one can expect order of magnitude speedups and the ability to tackle truly large
scale MDPs efficiently.

13

Chapter 3

Design

3.1 Solving Policy Iteration via GPU Acceleration

The solving of MDPs by Policy Iteration maps naturally to the CUDA architecture [23, 26, 17,
10]. The policy evaluation step reduces to repeated sparse matrix–vector operations, parallelized
through assigning different states to threads on the GPU, while the policy improvement step is
trivially parallel since each state updates independently [4, 13].

When we do policy evaluation on the GPU, each sweep means updating the value of every
state once. Within a sweep, the updates are perfect for parallelization: every state can be
handled by a different thread, because each update only depends on the values from the previous
sweep. But after finishing one sweep, we need its results before starting the next one. That
means the sweeps themselves have to run one after another in sequence, even though the work
inside each sweep runs in parallel [21, 3].

The solving of MDPs by computing both the value function and the corresponding greedy
policy also maps naturally to the CUDA architecture. Unlike Value Iteration, which updates
values for every state at every step, Policy Iteration switches between two distinct phases:
policy evaluation and policy improvement [23, 9]. The evaluation phase requires solving for
the value function of a fixed policy, which is equivalent to solving a large system of linear
equations or applying iterative methods such as Jacobi or Gauss–Seidel sweeps. This process
is computationally intensive but highly parallelizable since the update for each state depends
only on its own row of transitions. The improvement phase, in turn, consists of selecting the
best action per state according to the evaluated value function, which again can be performed
independently across states. These two features make Policy Iteration a strong candidate for
GPU acceleration, as the decomposition aligns well with CUDA’s block-and-thread execution
model [30, 14].

The issue of splitting state spaces is also present in Policy Iteration, but the algorithm has
additional computational challenges compared to Value Iteration. While the improvement step is
trivially parallel, policy evaluation either requires iterative sweeps or direct sparse linear algebra,
both of which are significantly sped up by GPU libraries such as cuSPARSE[17]. Traditional
parallel systems, such as shared-memory multi-CPU architectures or distributed clusters, face
limitations when tackling policy evaluation because of the heavy communication cost involved
in linear system solvers. On the other hand, modern GPUs provide vast parallelism, thousands
of lightweight threads and highly optimized sparse matrix operations, that are particularly well
suited to the alternating evaluation and improvement structure of Policy Iteration. Thus, not
only does the GPU provide scalability over large MDPs but it also alleviates the performance
bottlenecks inherent to policy evaluation, enabling speedups of one to two orders of magnitude
over conventional platforms[4, 13, 21].

14

3.2 Analyzing Policy Iteration on the GPU

The Policy Iteration algorithm presents multiple opportunities for parallelization [9, 23, 26].
Step-wise through the definition of the algorithm, we first encounter the policy evaluation phase,
which requires solving for the value function of the current policy. This can be carried out either
by iterative approximations (such as Jacobi sweeps) or by solving a sparse linear system [23]. In
the iterative case, each state update depends only on the values of its successor states, meaning
that rows of the transition matrix can be updated independently. This naturally leads to a
row-parallel formulation where each CUDA block processes a state, and its threads accumulate
contributions from successor states [4, 13]. In the direct linear system case, the computation
reduces to repeated sparse matrix–vector multiplications, which GPUs handle efficiently through
vendor libraries such as cuSPARSE [17, 10]. Both formulations make the evaluation phase
amenable to large-scale parallel execution [21, 3].

The policy improvement phase is computationally simpler and in fact even more paralleliz-
able. Each state independently selects the action that maximizes its expected return under the
newly evaluated values. This independence means that no synchronization is required between
states, allowing for a trivially parallel GPU kernel that assigns one block per state [30, 14]. The
only part of the algorithm which is not inherently independent is the termination condition,
which requires a global check for whether the policy has stabilized. This is analogous to the con-
vergence check in Value Iteration and can be implemented using efficient parallel reductions [10].
Taken together, these observations show that the bulk of Policy Iteration maps naturally onto
the GPU’s parallel execution model, with only minor synchronization costs for global checks.

3.3 Parallelization Strategy

Both phases of PI possess a high degree of data parallelism. This makes them particularly suit-
able for GPU acceleration[23, 26, 9]. Our approach is to exploit this parallelism simultaneously
across states and within the structure of each state, whether that means distributing work over
its successors or its available actions [17, 10].

During policy evaluation, the value of each state can be updated independently of the others
within a Jacobi sweep [23]. To reflect this independence, the algorithm assigns a separate CUDA
block to each state. Inside each block, threads cooperate to process the transitions of the action
currently prescribed by the policy. Each thread handles a portion of the state’s successors,
computing partial contributions to the expected return, which are then combined to form the
new value for that state. In this way, the workload is balanced across states, while larger
successor lists are efficiently processed by dividing them among multiple threads [4, 13, 21].

Policy improvement follows the same hierarchical idea, but the parallelism is organized
around actions rather than successors. Each state is again mapped to its own block, but this
time the threads within a block are distributed across the different actions available in that
state. Each action-thread computes the expected return for its assigned action, and once all
actions have been evaluated in parallel, the results are compared within the block to identify the
maximizing action. That action becomes the updated policy for the state, and the computation
proceeds independently for all states across the grid [30, 14].

This design, in which states are processed in parallel at the grid level and the finer work of
evaluating successors or actions is distributed among threads within each block, aligns naturally
with the GPU’s execution model [10]. It allows the algorithm to retain its mathematical structure
while effectively harnessing both coarse-grained and fine-grained parallelism [3].

3.4 Why CSR format is chosen?

15

3.4.1 What is CSR format?

The Compressed Sparse Row (CSR) format is one of the most commonly used representations
for sparse matrices [25]. Instead of storing the full two–dimensional array, CSR only records the
nonzero entries together with their positions. This is achieved by three one–dimensional arrays:
data, which holds the nonzero values; indices, which stores the column index of each entry;
and indptr (standing for index pointer), which indicates where each row begins and ends within
these arrays. If a matrix has m rows, then indptr has length m+1, so that the nonzeros of row
i are always located in the range indptr[i] : indptr[i + 1]. In this way the format compresses
storage from O(mn) to O(nnz), where nnz is the number of nonzero entries [22, 10].

CSR representation of an example small 2× 2 grid world has been shown in table3.1.

Table 3.1: CSR arrays for a small MDP stored by state–action rows.

Array Values

indptr [0, 2, 3, 4, 6, 7, 8]

indices [0, 1, 1, 2, 0, 2, 2, 1]

P_data [0.5, 0.5, 1.0, 1.0, 0.3, 0.7, 1.0, 1.0]

R_data [0.0, 1.0, 0.0, 2.0, 0.0, 0.0, 0.0, 3.0]

Notes: CSR is over rows r = s · A + a. For row r, entries live in the half-open range

[indptr[r], indptr[r+1]). Each nonzero at position j encodes a successor s′ = indices[j] with proba-

bility P_data[j] and reward R_data[j].

The per row map expansion of CSR arrays of table3.1 is shown in table3.2. Here, row
r=3 corresponds to (s=1, a=1) with entries j ∈ [4, 6): successors (s′, P,R) = (0, 0.3, 0.0) and
(2, 0.7, 0.0). On the GPU during evaluation, the block for state s selects the row (s,ε[s]) and
threads sum

∑

j Pj

(

Rj + γVold[s′j]
)

. During improvement, one thread per a computes Q(s, a)
from that row, and a shared-memory argmax chooses εnew[s].

Table 3.2: Per-row map (successor lists are shown as (s′, P, R) tuples).

r (s, a) beg end successors (s′, P,R)

0 (0, 0) 0 2 (0, 0.5, 0.0), (1, 0.5, 1.0)
1 (0, 1) 2 3 (1, 1.0, 0.0)
2 (1, 0) 3 4 (2, 1.0, 2.0)
3 (1, 1) 4 6 (0, 0.3, 0.0), (2, 0.7, 0.0)
4 (2, 0) 6 7 (2, 1.0, 0.0)
5 (2, 1) 7 8 (1, 1.0, 3.0)

The corresponding dense format above the above example (shown in figure3.1) consists of
two 6×3 matrices, which totals to 36 entries, one for transition probabilities P [r, s′] and one for
rewards R[r, s′]. On the other hand, the CSR format only requires 31 entries (16 nonzeros(2×8)
+ 7 row pointers + 8 column indices), which is a saving of 13%. For small matrices the CSR
overhead (row pointers, indices) can offset the gains, but as the matrix grows and the average
successors per state stays small, CSR’s storage grows roughly linearly in S, the number of
states, while dense storage grows quadratically S2, so the percentage savings increase with size.
A general analysis of storage savings for larger matrices is provided in Appendix A.2.

16

(a) Transition probabilities P [r, s]

P =

















0.5 0.5 0.0
0.0 1.0 0.0
0.0 0.0 1.0
0.3 0.0 0.7
0.0 0.0 1.0
0.0 1.0 0.0

















(b) Rewards R[r, s]

R =

















0.0 1.0 0.0
0.0 0.0 0.0
0.0 0.0 2.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 3.0 0.0

















Figure 3.1: Dense representations of the transition and reward matrices for a small MDP with
S = 3 states and A = 2 actions. Each row r = s ·A+ a corresponds to a state-action pair.

3.4.2 What are the advantages of CSR format?

The main advantage of CSR is its memory efficiency, since it avoids storing zeros explicitly [25].
In addition, all the nonzeros of a row are stored contiguously, which allows very fast row access.
This property is especially beneficial for sparse matrix–vector multiplication (SpMV), where
each row is multiplied independently with the vector. Because the nonzeros and their indices
are packed tightly, CSR also offers good cache locality on CPUs and coalesced memory access on
GPUs [10]. Furthermore, since rows can be processed independently, the format maps naturally
onto parallel architectures such as SIMD units and GPUs [17, 22]. For these reasons, CSR has
become the de facto standard representation in many sparse linear algebra libraries, including
cuSPARSE, Intel MKL, and PETSc [17].

3.5 Rationale for Design Choices

3.5.1 Why sparse grid worlds instead of dense ones?

A central design decision in this project was to focus on sparse grid worlds rather than dense
transition models. In real-world settings, any state tends to have a small number of successor
states, and most possible changes tend to be impossible[23, 26]. Representation of such settings
as dense matrices raises quadratic space requirements, storing mostly zeros that never get ac-
cessed. By comparison, a sparse representation stores only the nonzero transitions reducing the
memory requirement from O(S2A) to O(nnz) where nnz denotes the number of nonzero entries
[22, 10]. This choice not only allows one to experiment with larger problem instances but is also
inherently compatible with GPU acceleration. Sparse rows can be processed independently, and
their structure allows threads to move over the relevant successors in parallel, without wasting
time retrieving unnecessary zero entries. [4, 13, 21]. Thus, sparse grid worlds reflect both the
structure of real problems and the computational needs of the GPU.

3.5.2 Why Jacobi Sweeps instead of Gauss-Seidel?

Another important design choice concerns the update scheme for value iteration inside policy
evaluation. While the Gauss-Seidel method is generally preferred on CPUs due to its faster per
iteration convergence [23], it updates values in-place, which creates dependencies between states
within the same sweep. On a GPU, this introduces synchronization challenges(see AppendixB.1)
and limits the degree of parallelism that can be exploited [10]. In contrast, the Jacobi method
computes all updates from the values of the previous iteration. This eliminates intra-sweep
dependencies, meaning that every state can be updated in parallel without risk of race conditions.
Although this method may require more sweeps to converge, the ability to harness thousands
of GPU threads in parallel more than compensates for the slower iteration rate, making Jacobi
the more natural fit for large-scale GPU execution [4, 13].

17

3.5.3 Why both cuSPARSE and custom kernels implemented and compared?

Another rationale was to provide two implementations of the policy evaluation step: one based
on cuSPARSE and one using a hand written CUDA kernel. cuSPARSE offers highly optimized
vendor routines for sparse matrix operations, serving as a natural baseline for performance on
modern GPUs[17]. In contrast, a custom kernel provides a transparent, controllable implementa-
tion without the abstraction layers and general purpose overhead of library calls. By comparing
the two, we are able to quantify the speedups attributable to NVIDIA’s optimized library, and
to validate the effectiveness of our own implementation against a trusted reference.

3.5.4 Trade-offs: load balancing, memory traffic, and scalability

Each of these design choices involves trade-offs. Sparse representations dramatically cut down
memory usage, yet they introduce irregular row lengths that can create load balancing challenges
across GPU threads [10]. Jacobi sweeps scale naturally across states, but they sacrifice some
of the convergence rate that Gauss–Seidel would offer in a serial context [23]. cuSPARSE
routines are optimized for a wide range of sparsity patterns, but they may involve additional
memory traffic compared to hand-written kernels tuned to the grid world structure [17]. Overall,
the guiding principle is scalability: decisions were made to maximize parallelism and reduce
bottlenecks at scale, even if this meant giving up some iteration-level efficiency. The result is
a solver that matches the structure of real-world sparse environments and exploits the GPU’s
architecture effectively, while remaining grounded against library baselines for credibility [4, 13,
30, 14].

3.6 Summary

This chapter has shown how PI algorithm can be accelerated on GPUs by exploiting the par-
allelism in both policy evaluation and policy improvement, and by aligning design choices with
GPU architectures.

Policy evaluation, whether via Jacobi sweeps or sparse linear solvers, reduces to parallel
sparse matrix–vector operations, while policy improvement is embarrassingly parallel across
states. Our parallelization strategy therefore assigns each state to a block and distributes its
successors or actions among threads, capturing both coarse- and fine-grained parallelism.

Key design choices were motivated by scalability: sparse grid worlds to reduce memory
costs, Jacobi sweeps to avoid intra-sweep dependencies, and the inclusion of both cuSPARSE
and custom kernels to benchmark NVIDIA’s library speedups against a manual baseline.

Together, these decisions enable a GPU-centric formulation of Policy Iteration that preserves
its theoretical guarantees while scaling efficiently to large MDPs.

18

Chapter 4

Implementation

4.1 Technology Stack

My implementation is developed with C++20 and GCC 11.5, leveraging new language features
to both remove boilerplate and maintain zero-cost abstractions. GPU programming relies on
CUDA C++ 12.4, providing us with direct access to NVIDIA hardware features so that we
have low-level control over performance. Sparse linear algebra operations are offloaded using
cuSPARSE, which we use for matrix–vector multiply to maintain efficiency as well as numerical
stability. Unit testing is taken care of by GoogleTest[5], allowing us to verify correctness along
the way. The build system of the project is managed by CMake[11], providing a portable and
flexible configuration system across platforms.

4.2 Implementation through Plain Cuda

Figure 4.1: Flow of the overall architecture showing the interaction between CPU and GPU
during Policy Iteration.

19

4.2.1 Policy evaluation

In policy evaluation, we map each state to its own CUDA block. Inside that block, all threads
cooperate on a single CSR row —the one for the state’s currently chosen action (s,ε[s]). Each
thread takes a strided slice of that row’s nonzeros (successor states), multiplies the transition
probability by the immediate reward plus the discounted value of the successor, and accumulates
a partial sum. When they have each processed their slice, the threads perform a shared-memory
reduction to combine their partials into a single number Vnew[s], which the block writes back
to global memory. Intuitively, many threads “walk” different pieces of the same row in parallel,
then fold their work together into one state value. This process is illustrated in Figure 4.2.

Policy Evaluation (csr-vector / block-per-row)
Block s=0 (row 0 ·A+ π[0])

t=0 t=1 t=2 t=3

reduce

Vnew[0]

Block s=1 (row 1 ·A+ π[1])

t=0 t=1 t=2 t=3

reduce

Vnew[1]

Block s=2 (row 2 ·A+ π[2])

t=0 t=1 t=2 t=3

reduce

Vnew[2]

· · ·

Mapping:
• Grid: one block per state s.
• Within a block: threads iterate over CSR row (s,π[s]) successors.

• Shared-memory reduction → Vnew[s].

Figure 4.2: GPU Parallelization Strategy for Policy Evaluation

4.2.2 Policy improvement

In policy improvement, we again use one block per state, but now we assign one thread per action.
Each action-thread computes Q(s, a) by walking its own CSR row for (s, a) and summing over
successors; all these per-action Q-values are stored in shared memory. Once the threads finish, a
single thread in the block scans those Q values to pick the maximizing action and writes εnew[s].
Across the grid, states are handled in parallel by different blocks; within each block, actions are
evaluated in parallel by different threads; and a quick local selection produces the new action
for that state. This step is illustrated in Figure 4.3.

Policy Improvement (state-parallel, action-per-thread)

Block s=0

a=0

Q(0, 0)

a=1

Q(0, 1)

a=2

Q(0, 2)

a=3

Q(0, 3)

argmax over a πnew[0]

Block s=1

a=0

Q(1, 0)

a=1

Q(1, 1)

a=2

Q(1, 2)

a=3

Q(1, 3)

argmax over a πnew[1]

Block s=2

a=0

Q(2, 0)

a=1

Q(2, 1)

a=2

Q(2, 2)

a=3

Q(2, 3)

argmax over a πnew[2]

· · ·

Mapping:
• Grid: one block per state s.
• Within a block: one thread per action a computes Q(s, a).
• Shared memory holds Q(s, ·) → argmaxa to get πnew[s].

Figure 4.3: GPU Parallelization Strategy for Policy Improvement

20

4.3 Implementation through cuSparse

4.3.1 Policy evaluation (projected SpMV)

Instead of evaluating each state’s chosen action row directly, the code first projects the original
(S·A)-row CSR into a policy-specific S × S CSR. Concretely, for each state s it copies the CSR
row corresponding to the currently selected action (s,ε[s]) into row s of a new matrix P π, and
it precomputes the reward vector

rπ[s] =
∑

s′

P (s,ε[s], s′)R(s,ε[s], s′).

This process is illustrated in subfigure A of figure4.4.
All of this is done on the GPU: a kernel counts the nonzeros of each selected row (count_pi_nnz),

a device-side exclusive scan forms the new CSR pointer array, and another kernel copies indices/-
values while accumulating rπ (build_pi_csr_and_r). With P π and rπ available, each Jacobi
sweep implements the Bellman update in linear-algebra form:

V (k+1) = rπ + γ P π V (k).

The product y → P πV (k) is computed using the cuSPARSE SpMV routine (optimized CSR
SpMV), and then a small axpy-like kernel performs V (k+1) → rπ + γ y. After each sweep, a
single-block reduction computes the max-norm residual

δ(k) =
∥

∥V (k+1) − V (k)
∥

∥

∞
,

and evaluation stops when δ(k) < θ. Two engineering choices reduce memory traffic: (i) instead
of copying vectors between sweeps, the code swaps the pointers of Vold and Vnew (ping–pong), and
(ii) it updates the cuSPARSE dense-vector descriptors to the swapped pointers (no reallocation).
This process is shown in subfigure B of figure4.4. Intuitively, by compressing the active rows into
a compact S-row matrix and delegating the heavy lifting to a tuned SpMV, the sweep pushes
value mass along edges efficiently, with only a cheap vector add/scale and a one-block residual
check around it.

4.3.2 Policy improvement

Policy improvement uses the same mapping as the kernelized approach: one CUDA block per
state and one thread per action. Each action-thread computes

Q(s, a) =
∑

s′

P (s, a, s′)
(

R(s, a, s′) + γ V (s′)
)

by walking the CSR row for (s, a). The thread block stores all per-action Q-values in shared
memory; then a single thread applies deterministic tie-breaking (prefer the current action unless
another exceeds it by more than a small ε) and writes εnew[s]. Thus, states proceed in parallel
across blocks, actions proceed in parallel within a block, and a quick local selection produces
the new action for each state.

4.3.3 Convergence check and housekeeping

Instead of copying entire policies back to the host each outer iteration, a device kernel counts how
many entries differ between εnew and ε; only that single integer is transferred to the host. If the
count is zero, policy iteration terminates; otherwise the policy pointers are swapped on device
(avoiding a full vector copy). This step is shown in subfigure C of figure4.4. Each outer iteration
(policy) builds P π once and queries cuSPARSE for the SpMV scratch buffer size, allocating a

21

temporary buffer accordingly. The implementation binds the floating type (float or double)
to the correct cuSPARSE compute datatype, and uses explicit error checks for both CUDA and
cuSPARSE for robustness and reproducibility.

Data GPU Kernel Host cuSPARSE

CSR over (S ·A) rows

indptr, indices, P_data, R_data
Policy ε

Vold, Vnew (ping–pong)

S-vectors

count_pi_nnz

count nnz of rows (s,π[s])
nnz per s

device exclusive scan
build indptrπ

indptrπ

build_pi_csr_and_r

copy (s,π[s]) rows

accumulate rπ[s]

rπ
P π CSR:

indptrπ, indicesπ, valsπ

cuSPARSE SpMV:
y → P πV (k)

set descriptors
to swapped pointers

axpy-like kernel:
V (k+1) → rπ + γ y

residual reduction:
δ(k) = ↔V (k+1) − V (k)↔∞

δ(k) < θ?

swap pointers:
Vold ↔ Vnew

No

Yes

∀s: one block;
∀a: one thread

compute Q(s, a) by CSR walk

shared mem & tie-break:
εnew[s] = argmaxaQ(s, a)

εnew

device diff-count:
#{εnew[s] -= ε[s]}

copy count
to host

count = 0?

swap ε ↔ εnew (device)

Yes

A) Build projected CSR P π and reward rπ (device)

B) Policy evaluation sweeps (Jacobi) on device

C) Policy improvement (state-parallel, action-per-thread)

D) Convergence check and housekeeping

original transition model
current policy (device)

S-vectors on device

Figure 4.4: GPU Parallelization Strategy for Policy Iteration with cuSPARSE.
The construction of projected CSR Pπ and reward rπ (A) is followed by Jacobi policy evaluation sweeps
(B) using cuSPARSE SpMV, then policy improvement (C), and a convergence check with housekeeping
(D). Legend at top.

22

Chapter 5

Evaluation

5.1 Hardware Used

The CPU used in the experiments is an AMD EPYC 9634, which is part of the Zen 4 family of
processors. This CPU features 168 cores and 168 threads, with a base clock speed of 2.4 GHz
and a maximum boost clock of 3.7 GHz. It has a large cache hierarchy, including 5.3MB of
L1 cache, 168 MB of L2 cache, and 768 MB of L3 cache. The CPU was released in 2023 and
is designed for high-performance computing tasks, making it well-suited for the computational
demands of the experiments conducted in this work. The detailed specifications of the CPU are
summarized in Table 5.1.

Model Architecture Cores / Threads Cache (L1/L2/L3) Release Year

Epyc 9634 x86_64 (Zen 4) 168 / 168 5.3MB /168MB /768MB 2023

Table 5.1: System CPU Specifications

Table5.2 provides a comparison of the key specifications of the NVIDIA L40S, V100, L4,
and H100 GPUs. The L40S is based on the Ada Lovelace architecture, while the V100 uses the
Volta architecture, and the L4 and H100 are also based on Ada Lovelace and Hopper architec-
tures, respectively. The table highlights differences in memory capacity, architecture, and power
consumption.

GPU Release Year Architecture Memory (Barkla) Power Cap (Barkla)

L40S 2022 Ada Lovelace (AD102) ≈46 GB GDDR6 350 W
V100 2017 Volta (GV100) ≈16 GB HBM2 250 W
L4 2023 Ada Lovelace (AD104) ≈24 GB GDDR6 72W
H100 2022 Hopper (GH100) ≈80 GB HBM3 700 W

Table 5.2: Comparison of NVIDIA L40S, V100, L4, and H100 GPUs on Barkla, showing actual
memory sizes and power caps from nvidia-smi.

5.2 Data Used in Evaluation

5.2.1 Correctness Test Configurations

To verify that both the CPU and GPU implementations produce identical and correct solutions,
we include a minimal MDP with known optimal policy and value.

23

Table 5.3: Correctness Test MDP

ID Type Size / S Walls Obstacles γ Seed File Size

G1 Grid (slip) 64× 64 0 0 0.9 42 0.98 MB

G2 Grid (slip) 256× 256 0 0 0.9 42 26.5 MB

For correctness testing, we employ two reproducible grid worlds (G1 and G2) of increasing
size. Both are slip grids without walls or obstacles, ensuring fully deterministic dynamics apart
from the stochastic slip mechanism. The smaller grid (64× 64) provides a lightweight environ-
ment for quickly verifying convergence behavior, while the larger grid (256× 256) offers a more
demanding case that stresses both memory access and iteration counts. By comparing the final
value functions and policies from the CPU and GPU implementations under identical seeds,
we can confirm numerical agreement and establish correctness without relying on degenerate
single-state cases.

5.2.2 Performance Test Configurations

To characterize the performance and scaling of policy iteration on GPU vs. CPU, we evaluated
six structured grid-world MDPs of varying sizes, discount factors, and sparsity patterns. The
configurations differ in grid dimensions, presence of walls and obstacles, and discount factor
settings, as summarized in Table 5.4.

Table 5.4: Performance Test MDPs

ID Type Size / S Walls Obstacles γ Seed File Size

G1 Grid (slip) 512× 512 0 0 0.9 42 110.4 MB
G2 Grid (slip) 1024× 1024 0 0 0.9 42 455.8 MB
G3 Grid (slip) 1024× 1024 0 0 0.95 42 455.8 MB
G4 Grid (slip) 1024× 1024 0.3 0.1 0.9 42 340.6 MB
G5 Grid (slip) 1024× 1024 0.4 0.1 0.9 42 298.6 MB
G6 Grid (slip) 2048× 2048 0 0 0.9 42 1.88 GB

In the gridworld environments, the term slip refers to stochastic transitions: when the agent
chooses an action a (e.g. “move up”), it succeeds with probability 1 − ε, but with probability ε

it instead executes a different move, typically one of the perpendicular directions. For example,
with slip ε = 0.1, the agent moves as intended 90% of the time, and with probability 0.1 it “slips”
into a neighboring cell. This slip probability is evenly divided between the two perpendicular
directions, so that each occurs with probability 0.05. Importantly, the agent never slips into the
reverse (opposite) direction of its intended move. For instance, if the intended action is “move
south,” then with probability 0.9 the agent indeed moves south, with probability 0.05 it instead
moves west, and with probability 0.05 it moves east. This models imperfect control and makes
the Markov Decision Process (MDP) non-deterministic. All the gridworlds use this slip model to
introduce stochasticity in the transition dynamics, with ε = 0.1 fixed across all the environments
shown in Table 5.4.

In addition to slip, some gridworlds introduce walls and obstacles. Walls are impassable
cells that the agent cannot enter; any action that would move into a wall leaves the agent in
its current position. Obstacles, in contrast, are traversable cells that incur a negative reward
(penalty) when entered. For example, with an obstacle fraction of 0.1, ten percent of the grid
cells are designated as penalty states, encouraging the agent to find paths that avoid them.
Similarly, a wall fraction of 0.3 means that thirty percent of the grid cells are blocked and act as

24

barriers in the environment. Together, these mechanisms increase the difficulty of navigation by
forcing detours around walls and penalizing risky routes through obstacles. The configurations
in Table 5.4 indicate the proportion of walls and obstacles for each tested gridworld.

Grid worlds G1 to G6 are designed to capture a broad spectrum of workload characteristics.
G1 provides a moderately sized 5122 grid to quantify baseline performance and kernel launch
overhead. G2 and G3 scale to 10242, with γ = 0.9 vs. γ = 0.95 to test sensitivity to longer
planning horizons. G4 and G5 further increase difficulty by adding walls (up to 40% of cells
blocked) and obstacles (10% penalty states), which force irregular transitions and more complex
reward structures. Finally, G6 expands the problem size to 20482, stressing memory capacity
and bandwidth at large scale.

5.3 Performance Results

Data Serial Cuda Cuda-CuSparse

G1 21002ms 8469ms 1729ms
G2 94778ms 46350ms 6758ms
G3 377828ms 199024ms 27527ms
G4 62919ms 33393ms 888ms
G5 1268ms 623ms 50ms
G6 402002ms 191833ms 48737ms

Table 5.5: Performance results for the different implementations of the policy iteration algorithm.
The values represent the time taken in milliseconds to compute the optimal policy and value
function for each MDP size.

Speedup results show that the CUDA implementation achieves significant performance improve-
ments over the serial CPU version, particularly for larger MDP sizes. The CUDA-CuSparse
implementation further optimizes memory access patterns and computational efficiency, demon-
strating the effectiveness of leveraging specialized libraries for sparse matrix operations.

Data Cuda-Speedup Cuda-CuSparse-Speedup

G1 2.50× 12.14×
G2 2.04× 14.02×
G3 1.89× 13.73×
G4 1.88× 70.85×
G5 2.03× 25.36×
G6 2.10× 8.25×

Table 5.6: Performance results for the different implementations of the policy iteration algorithm.
The values represent the time taken in milliseconds to compute the optimal policy and value
function for each MDP size.

The results shown in tables 5.5 and 5.6 are plotted in figures5.1 and 5.2.

25

Figure 5.1: Policy Iteration times (log scale) for different numbers of states and actions.

Figure 5.2: Policy Iteration Speedups for cuda and cuSPARSE cuda implementations compared
to CPU for different datasets.

5.3.1 Interpretation of speed-ups using cuSparse vs plain cuda

Table 5.5 reports the raw runtimes of the three implementations: the serial CPU baseline, a
hand-written CUDA kernel, and a CUDA version accelerated with the cuSPARSE library. The
corresponding speedups relative to the serial baseline are shown in Table 5.6.

Overall, the plain CUDA implementation provides consistent improvements of about 2×
across all tested gridworlds (G1–G5). This shows that parallelization alone already amortizes
kernel launch overheads and benefits from massive thread- level parallelism, particularly on
larger grids. However, the speedups plateau quickly, indicating that the naive CUDA kernels
remain memory-bound and do not fully exploit sparsity.

By contrast, the CUDA+cuSPARSE implementation yields dramatic gains, ranging from
∼ 12× (G1–G3) to more than 70× (G4). These improvements stem from the use of specialized
sparse matrix–vector (SpMV) routines that optimize memory access patterns, coalesce reads,
and minimize redundant operations. The advantage is most pronounced in G4 and G5, where the
introduction of walls and obstacles increases structural sparsity, allowing cuSPARSE to exploit
the reduced number of nonzero entries. Even for the largest grid (G6), cuSPARSE maintains an
8× speedup despite the absence of a plain CUDA measurement.

In summary, plain CUDA parallelization provides a reliable baseline improvement over CPU,
but leveraging vendor-tuned sparse linear algebra libraries such as cuSPARSE is critical to unlock
the full performance potential of policy iteration on large, structured MDPs.

26

Mustafa Can Aydin

5.4 Performance Comparison Between Different GPUs

Data Serial L40s V100 L4 H100

G1 21002ms 1456ms 2500ms 1729ms 1950ms
G2 94778ms 5191ms 13989ms 6758ms 6580ms
G3 377828ms 21217ms 57912ms 27527ms 27242ms
G4 62919ms 615ms 1876ms 888ms 811ms
G5 1268ms 82ms 101ms 50ms 75ms
G6 402002ms 19992ms 51752ms 48737ms 45591ms

Table 5.7: Runtime results for the different implementations of the policy iteration algorithm.
The values represent the time taken in milliseconds to compute the optimal policy and value
function for each MDP size.

Results shown in tables 5.7 and 5.8 are plotted in the figures 5.3 and 5.4.

Data L40s V100 L4 H100

G1 14.4× 8.4× 12.1× 10.8×
G2 18.3× 6.8× 14.0× 14.4×
G3 17.8× 6.5× 13.7× 13.9×
G4 102.3× 33.5× 70.9× 77.6×
G5 15.5× 12.6× 25.4× 16.9×
G6 20.1× 7.8× 8.3× 8.8×

Table 5.8: Speedup (Serial ÷ GPU runtime) for different GPUs across MDP sizes.

Figure 5.3: Policy Iteration times (log scale) using GPUs compared to CPU for different numbers
of states and actions.

27

Figure 5.4: Policy Iteration speedups using GPUs compared to CPU for different numbers of
states and actions.

The results in Table 5.8 show that the L40s consistently provides the best performance
across all tested MDP configurations, followed by the H100, then the L4, and finally the older
V100.

At first sight this may seem counterintuitive, since the H100 is NVIDIA’s current flagship
datacenter GPU. However, the observed ranking can be explained by the characteristics of
the workload. Policy iteration with Jacobi evaluation is dominated by sparse matrix–vector
multiplications, which are largely memory-bound rather than compute-bound.

The L40s, based on the Ada Lovelace architecture with 48 GB of GDDR6, appears par-
ticularly well matched to this workload. Its memory subsystem handles structured sparsity
efficiently, leading to dramatic speedups, especially in environments with obstacles (over 100×
in G4). The H100, built on the Hopper architecture with 80GB of HBM3, achieves second-best
results. While it offers higher peak throughput and advanced tensor core capabilities, these
features are not fully exploited by the memory-bound nature of the problem, which limits its
advantage.

The L4, another Ada-based GPU with 24 GB of GDDR6 and a lower power budget, achieves
respectable performance and consistently outperforms the older V100, but its smaller memory
bandwidth constrains scaling on larger models. The V100, based on the Volta architecture with
HBM2, delivers the lowest speedups, reflecting its older design and less efficient memory system.

Overall, these findings illustrate that raw theoretical performance does not always trans-
late into maximum real-world acceleration. The decisive factor is the match between workload
characteristics—in this case sparse linear algebra with irregular memory access—and the GPU
memory architecture. For policy iteration, the L40s aligns particularly well with these require-
ments, resulting in the highest observed gains.

5.5 Performance Gains Through cuSparse

The introduction of cuSPARSE into the policy iteration pipeline yielded dramatic performance
improvements, with measured speedups ranging from approximately 12× to over 100× on certain
GPUs (see Table 5.8). These gains can be attributed to several factors inherent to the design of
cuSPARSE and its ability to exploit the sparsity patterns of MDP transition matrices [17, 10, 25].

First, cuSPARSE provides highly optimized sparse linear algebra kernels, including com-
pressed sparse row (CSR) matrix–vector multiplication (SpMV), that are tuned at the hard-
ware level for each GPU architecture [19, 22]. By leveraging vendor-optimized memory access
strategies, warp-level primitives, and kernel fusion techniques, cuSPARSE achieves much higher
throughput than custom kernels written at the application level. This effect is particularly vis-
ible in large sparse problems such as the 1024 × 1024_sparse benchmark, where the speedup

28

exceeded 100× on L40s GPUs. In these cases, the density of nonzeros is low, allowing cuS-
PARSE to minimize global memory traffic and avoid the thread underutilization often observed
in custom block-per-state kernels [4, 13].

Second, cuSPARSE benefits from architectural features of newer GPUs (e.g., L40s, H100),
which include larger memory bandwidth, improved cache hierarchies, and dedicated tensor and
sparse cores. These hardware units are directly exploited by the library but are not trivial to
target with hand-written CUDA kernels [10]. This explains why the relative gains are higher
on these architectures compared to older ones like the V100, where the observed speedups are
more modest (6–8×). The difference highlights both the maturity of NVIDIA’s sparse libraries
and the growing architectural emphasis on sparse computation in recent GPU generations [19].

Finally, by reformulating the policy evaluation step to operate on the projected policy matrix
P π instead of the full (|S||A| × |S|) transition matrix, we reduce computational overhead and
memory pressure. When this reformulation is combined with cuSPARSE’s device-side routines
for SpMV and vector operations, the evaluation loop becomes dominated by library calls that
scale linearly with the number of nonzeros [21, 3]. This leads to predictable, architecture-
optimized performance that significantly outpaces the Jacobi-style custom kernels.

In summary, the 12×–100× performance boost observed across GPUs stems from the syn-
ergy between problem sparsity, hardware-aware optimizations in cuSPARSE, and the architec-
tural evolution of modern accelerators. The results demonstrate that for sparse MDPs, vendor-
provided primitives can vastly outperform bespoke implementations, particularly on GPUs with
advanced memory and sparse-compute capabilities [4, 13].

5.6 Performance Trade-offs

The experimental results across different GPUs highlight a number of important performance
trade-offs when deploying policy iteration at scale. While all accelerators significantly outper-
form the serial CPU baseline, the degree of advantage varies with both problem size and GPU
architecture, as shown in Figures 5.4 and 5.3.

First, the choice of GPU strongly influences runtime. Modern architectures such as the
L40s and H100 consistently deliver the lowest execution times, with speedups often exceeding
15× relative to the CPU, and reaching over 100× in sparse settings (e.g., G4 in table5.8). In
contrast, the V100, which is a capable accelerator, shows comparatively modest gains of 6–12×.
This illustrates the rapid evolution of GPU hardware: architectural features such as higher
memory bandwidth, larger caches, and dedicated sparse-compute units directly translate into
substantial runtime improvements for iterative dynamic programming workloads.

Second, problem structure plays a decisive role in shaping observed performance. Dense
instances (e.g., G2, G3, G6) yield moderate but stable speedups across all GPUs, while sparse
or structured problems (e.g., G4) see disproportionately large boosts. This disparity reflects
the fact that library-backed sparse matrix operations scale with the number of nonzeros rather
than the nominal size of the state space. When sparsity is high, GPU kernels spend less time on
redundant computations and more effectively utilize memory bandwidth, amplifying the benefits
of hardware acceleration.

Third, while newer GPUs achieve the highest raw throughput, there is a cost-performance
tradeoff to consider. High-end devices such as the H100 offer cutting-edge sparse computation
capabilities, but their procurement and operational costs may outweigh the incremental gains
over more economical options like the L40s or L4, especially in mid-scale problem regimes. Thus,
the choice of hardware should be informed not only by peak speedups but also by the scale of
the MDPs under consideration and the practical budgetary constraints.

In summary, the results demonstrate that performance is a function of both hardware archi-
tecture and problem sparsity. Sparse instances benefit disproportionately from GPU accelera-
tion, and while state-of-the-art GPUs such as the L40s and H100 deliver the best performance,

29

careful consideration must be given to balancing raw speed, workload characteristics, and hard-
ware costs when selecting an accelerator for policy iteration at scale.

5.7 Limitations

Despite the substantial performance gains demonstrated through GPU acceleration and the use
of cuSPARSE, several limitations of the current study should be acknowledged.

First, the evaluation has been restricted to a finite set of benchmark MDPs (G1–G6) with
synthetic structures. While these are representative of typical gridworld or structured transition
problems, real-world domains may exhibit different sparsity patterns, stochasticity, or irregular
transition graphs. The extent to which the observed performance improvements generalize to
more complex or heterogeneous environments remains an open question.

Second, the experiments primarily focus on execution time as the performance metric. Other
important factors, such as energy efficiency, memory footprint, and cost-effectiveness, have not
been systematically evaluated. For instance, although high-end GPUs such as the H100 provide
the fastest runtimes, their energy and financial costs may diminish their practical advantage in
production settings compared to more affordable accelerators like the L40s or L4.

Third, while cuSPARSE offers significant performance advantages, its reliance on vendor-
specific libraries introduces portability constraints. The current implementation is tightly cou-
pled to NVIDIA hardware and software ecosystems, making it less adaptable to alternative
accelerators (e.g., AMD GPUs, TPUs, or emerging custom accelerators). Furthermore, library-
level optimizations are black-box in nature, limiting opportunities for algorithm-specific tuning
or fine-grained control over memory layout and kernel execution.

Finally, the evaluation methodology emphasizes strong scaling on a single GPU. Multi-GPU
or distributed scaling was not explored, even though such strategies are increasingly relevant
for very large state spaces. Similarly, numerical considerations such as floating-point precision,
stability under high discount factors, or error propagation in long horizons were not exhaustively
analyzed.

In summary, while the reported results establish a clear performance advantage for GPU-
based policy iteration, they should be interpreted within the constraints of the experimental
setup. Broader validation across diverse MDP domains, alternative hardware platforms, and
additional performance metrics will be necessary to fully characterize the strengths and limita-
tions of this approach.

5.8 Future Improvements

Even though the project has achieved its primary objectives, there are several areas where future
improvements could be made to enhance performance, usability, and functionality. Some poten-
tial future improvements include: Testing on more diverse and larger datasets(subsection5.8.3),
testing with different types of GPUs with varying architectures and capabilities(subsection5.8.4),
testing multi GPU setups to evaluate scalability and performance in distributed environments(subsection5.8.1).

5.8.1 Multi GPU Support

The current implementation is designed for single-GPU systems. Extending support to multi-
GPU setups could enable the solver to handle even larger MDPs by distributing the workload
across multiple GPUs. Also, it would be beneficial to explore how well the algorithm scales with
the addition of more GPUs, and to identify any potential bottlenecks in communication or syn-
chronization between devices. The literature review in section2.3.4 discusses some strategies for
multi GPU and distributed solutions that could be adapted for this project. Accordingly, future

30

work could focus on implementing and testing these strategies to evaluate their effectiveness in
improving performance and scalability.

5.8.2 Comparison with parallel CPU implementations

Another area that has not been explored is the comparison with parallel CPU implementations
such as those based on OpenMP or MPI. This would provide a more balanced assessment of the
performance advantages of the GPU solver, since most modern CPUs offer multiple cores and
are commonly deployed with multi threaded software. Benchmarking against optimized CPU
implementations would clarify whether observed speedups arise solely from GPU parallelism or
whether comparable gains could be achieved with highly tuned CPU code, thereby placing the
GPU results in a more realistic context.

5.8.3 Testing on more diverse and larger datasets

Testing has been performed on 6 synthetically generated grid world MDPs of varying sizes and
sparsity patterns shown in the table5.4. Even though there exists a certain level of diversity
in the test datasets, varying features of the grid-worlds have not been fully explored. For
instance, the stochasticity in the transition dynamics has only been tested with slip grids where
the agent has a probability of slipping to adjacent cells with a fixed slip probability of 0.1 as
explained in section5.2.2. Instead, other types and levels of stochasticity could be explored or
fully deterministic environments could be tested. Additionally, the current test datasets are
limited to grid-world environments. Random sparse transition matrices or real world MDP
datasets could be used to evaluate the performance and generalizability of the solver.

5.8.4 Testing with different types of GPUs

The performance of the algorithm has been tested on 4 different NVIDIA GPUs: L40s, H100,
L4, and V100 (shown in table5.2). Even though, these GPUs vary in architecture, memory
capacity, and compute capabilities, there is an oppotunity to test with a wider range of GPUs.
For instance, testing on consumer-grade GPUs like the RTX series or popular cloud GPUs such
as AWS provided Tesla T4

31

Chapter 6

BCS Criteria and Self-Reflection

6.1 BCS Project Criteria

6.1.1 Application of Practical and Analytical Skills

This project applies concepts from COMP528 and COMP532. COMP532 introduces MDPs
in RL, while COMP528 provides foundations in GPU programming with CUDA in addition
to other parallel computing concepts. Also COMP315 provides foundations in linux systems
programming which was heavily used throughout this project during the implementation phase
of the cuda MDP solver in the Barkla redhat enterprise linux environment. The work involves
systems programming, benchmarking, and validation, reflecting skills gained throughout the
degree.

6.1.2 Innovation and Creativity

Although policy iteration is well-known, its efficient implementation on GPUs for large, sparse
MDPs remains underexplored. This project uses sparse data structures with differing charac-
teristics during the evaluation phase and investigates how these intrinsic characteristics affect
the speedups obtained. The use of synthetically generated environments demonstrates creative
problem formulation without reliance on external data. In addition, the project explores the per-
formance gains achievable by using NVIDIA’s optimized libraries such as cuSPARSE, compared
to manually implemented CUDA kernels.

6.1.3 Synthesis and Evaluation

The project integrates reinforcement learning, parallel computing, and numerical methods to
produce a performant solver. Evaluation includes correctness checks through a Python script(see
Appendix5.2.1) which compares both the value functions and policies obtained from both the
CPU and GPU implementations and records the number of iterations taken to converge. The cor-
rectness is verified by ensuring that both implementations produce identical and correct solutions
by comparing the final value functions and policies from the CPU and GPU implementations
under identical seeds.

6.2 Self Reflection

This project has been an opportunity to combine theoretical knowledge with practical imple-
mentation, and also to value the importance of critical self-management. Work was structured
into clear phases, beginning with problem scoping and literature review, and continuing through
modular development, testing, and performance analysis.

32

Several design decisions had to be carefully considered and traded off. For example, whether
to utilize vendor-optimised libraries (such as cuSPARSE) and writing bespoke kernels presented
performance vs. maintainability tradeoffs. Similarly, the memory demands of big sparse matrices
sometimes restricted problem sizes, requiring a trade-off between realism in benchmarking and
practicality on available hardware.

Weaknesses of the approach are also noted. Numerical stability, convergence tolerances,
and GPU memory usage all affect the reliability and generality of the solver. Although the
implementation successfully achieved its objectives, continued optimization and scaling (e.g. to
multi GPU settings) are still possible future directions.

In general, this project reaffirmed the importance of organized self-management and reflection
in complicated technical work, showing how planning, ongoing assessment, and transparency
regarding limitations are beneficial to both personal growth and the quality of research findings.

33

Bibliography

[1] Nathan Bell and Michael Garland. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In SC ’09: Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis, 2009.

[2] S. Chowdhury et al. Gpu-accelerated path planning in stochastic flows. Journal of Marine
Science and Engineering, 10(6):746, 2022.

[3] Tanvir Chowdhury and Deepak Subramani. Gpu-accelerated markov decision process
solvers for ocean path planning, 2021. ResearchGate preprint.

[4] Chris Farrington. Gpu-accelerated value iteration for large mdps, 2023.

[5] Google. Googletest: Google c++ testing framework, 2025. Accessed: 2025-08-30.

[6] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction to Parallel
Computing. Addison-Wesley, 2nd edition, 2003.

[7] Eric A. Hansen and Shlomo Zilberstein. Lao*: A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129(1–2):35–62, 2001.

[8] Chung-Wei Ho, Marek Petrik, and Wolfram Wiesemann. Partial policy iteration for robust
markov decision processes. Journal of Machine Learning Research, 22(256):1–58, 2021.

[9] Ronald A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.

[10] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A
Hands-on Approach. Morgan Kaufmann, 3rd edition, 2016.

[11] Kitware, Inc. CMake: Cross-Platform Make, 2025. Version 3.29, Accessed: 2025-08-30.

[12] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Proceedings of
the 17th European Conference on Machine Learning (ECML 2006), pages 282–293. Springer,
2006.

[13] Luca Laurenti et al. Intervalmdp.jl: A julia package for interval markov decision processes
with gpu acceleration, 2024.

[14] Charles Lawson et al. Gpu-accelerated policy iteration rrt#, 2020.

[15] Alexander Mathiesen et al. Intervalmdp.jl: Gpu-accelerated value iteration for interval
mdps. arXiv preprint arXiv:2403.10672, 2024.

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

34

[17] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel program-
ming with cuda. ACM Queue, 6(2):40–53, 2008.

[18] NVIDIA. Nvidia nvlink high-speed gpu interconnect. https://developer.nvidia.com/

nvlink, 2016.

[19] NVIDIA Corporation. NVIDIA cuSPARSE Library, 2023. Version 12.2.

[20] NVIDIA Corporation. CUDA C++ Programming Guide, 2024. Version 12.4, accessed
August 30, 2025.

[21] José Ortega et al. Gpu accelerated value iteration for perishable inventory management,
2019.

[22] John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and James C.
Phillips. Gpu computing. Proceedings of the IEEE, 96(5):879–899, 2008.

[23] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[24] A. Ruiz-Loza and J. Hernandez. A parallel solver for markov decision processes in crowd
simulations. In Winter Simulation Conference, 2015.

[25] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2nd edition, 2003.

[26] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 2nd edition, 2018.

[27] Till Tantau, Christian Feuersänger, et al. The TikZ and PGF Packages: Manual for version
3.1.10, 2024. Available at CTAN.

[28] University of Liverpool. Barkla high performance computing facility. https://www.

liverpool.ac.uk/research-it/high-performance-computing/, 2025. Accessed: 2025-
08-30.

[29] Manhui Wang, Jianping Meng, Ben Pietras, and Tom Stephenson. Barkla2 HPC Cluster
User Guide (draft). Research IT, IT Services, University of Liverpool, July 2025. Draft
version.

[30] Kyle H. Wray and Shlomo Zilberstein. Parallel point-based value iteration for solving
pomdps. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 2025–
2031. AAAI, 2014.

[31] Xiaowei Zhu et al. Graph processing on gpus: A survey and performance analysis. In
VLDB, 2016.

35

https://developer.nvidia.com/nvlink
https://developer.nvidia.com/nvlink
https://www.liverpool.ac.uk/research-it/high-performance-computing/
https://www.liverpool.ac.uk/research-it/high-performance-computing/

Appendix A

Implementation Details

A.1 CSR Input Format

For reference, the following JSON snippet illustrates the Compressed Sparse Row (CSR) repre-
sentation used as input in our implementation:

Listing A.1: CSR input format example

1 {
2 "S": 4,
3 "A": 4,
4 "gamma": 0.9,
5 "format": "CSR",
6 "P": {
7 "indptr": [0,2,5,8,10,12,15,17,20,23,25,28,30,33,35,37,40],
8 "indices": [0,1,2,1,0,1,0,2,0,2,1,0,3,1,0,1,3,0,1,3,0,3,2,2,3,3,
9 0,2,2,0,1,3,2,3,2,3,1,2,1,3],

10 "data": [0.95,0.05,0.90,0.05,0.05,0.90,0.05,0.05,
11 0.95,0.05,0.95,0.05,0.90,0.05,0.05,0.95,
12 0.05,0.90,0.05,0.05,0.90,0.05,0.05,0.95,
13 0.05,0.90,0.05,0.05,0.95,0.05,0.90,0.05,
14 0.05,0.95,0.05,0.95,0.05,0.90,0.05,0.05]
15 },
16 "R": {
17 "indptr": [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],
18 "indices": [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3],
19 "data": [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
20 }
21 }

In the example shown in listingA.1, the number of states S = 4 directly maps to the four
cells of the 2 × 2 grid, and each state has four possible actions (A = 4). The P section defines
the transition probabilities, while the R section specifies the reward structure.

A.2 CSR vs Dense Storage Comparison

To quantify the space savings of using Compressed Sparse Row (CSR) format instead of dense
storage, consider a state space of size S where each state has on average k successors (k 1 S).

For each action matrix, the dense representation requires S2 entries. If both the transition
matrix P and reward matrix R are stored densely, the cost is

Dense cost = 2S2.

CSR requires storage for

36

• two arrays of values: 2 · nnz,

• column indices: nnz,

• row pointers: S + 1.

Here, nnz ≈ kS. Thus, the total cost is

CSR cost ≈ 3kS + (S + 1).

The ratio between CSR and dense storage is therefore

CSR cost

Dense cost
≈

3kS + S

2S2
=

3k + 1

2S
.

For small S, the overhead of row pointers and column indices can reduce the advantage (as
seen in the 2×2 example, where savings are only 13%). However, as S increases while k remains
bounded, the cost of CSR grows linearly in S, whereas dense storage grows quadratically. Hence
the percentage of space saved improves dramatically with larger matrices.

37

Appendix B

GPU Architecture Notes

B.1 Write–After–Read Hazards

In parallel programming, a write–after–read (WAR) hazard occurs when one thread attempts to
overwrite a memory location that another thread still needs to read. On GPUs, avoiding such
hazards is essential for correctness because thousands of threads may execute concurrently.

In the context of policy evaluation, we employ a synchronous Jacobi iteration. Each sweep
reads all values from the previous vector V (k) and writes results into a distinct output vector
V (k+1). Because all reads complete from V (k) before any updates are used in the next iteration,
there are no write–after–read conflicts. This design avoids the need for atomic operations or
fine-grained synchronization across threads.

Example: Jacobi vs. Gauss–Seidel

Consider an update rule V [s]→ f(V) over states s:

Jacobi (safe on GPU, no hazards)

for s in parallel:

V_new[s] = f(V_old) # read-only from V_old

after all threads finish:

V_old = V_new

Here, all threads only read from the immutable vector V_old and write into a separate buffer
V_new. No thread overwrites values that another thread still needs.

Gauss-Seidel (hazardous on GPU)

for s in parallel:

V[s] = f(V) # reads and writes to same array

In this scheme, one thread may update V[s] while another thread still requires the old value
of V[s] for its computation. This is a write–after–read hazard, and avoiding it would require
thread ordering or atomic updates, both of which reduce GPU efficiency.

38

Appendix C

Experimental Setup

C.1 Barkla Slurm Scripts

This batch script demonstrates how GPU experiments were submitted to the Barkla cluster
using SLURM[29]. At the top, the #SBATCH directives request resources: the job is named
mdp-gpu-h100, placed in the gpu-h100 partition, and runs on a single node with one NVIDIA
H100 GPU for up to six hours. Output and error messages are redirected into log files named
after the job, and the working directory is set to the project’s code folder.

Before execution, the environment is prepared by purging any previously loaded modules
and loading CUDA version 12.8. The script then prints the hostname of the allocated node and
calls nvidia-smi to record the details of the assigned GPU in the job log, which is helpful for
debugging and reproducibility.

The executable path, configuration file, and output file are defined as variables for clarity.
The actual computation is launched using srun, SLURM’s standard run command, which exe-
cutes the CUDA program with the given JSON configuration and redirects both standard output
and error into a single results file. Once the job finishes, a short message confirms completion
and points to the output file.

Overall, the script provides a minimal example of how CUDA applications can be run effi-
ciently on a GPU node under SLURM.

#!/bin/bash -l

#SBATCH -J mdp-gpu-h100

#SBATCH -p gpu-h100

#SBATCH -N 1

#SBATCH --gres=gpu:h100:1

#SBATCH -t 06:00:00

#SBATCH -o slurm-%x-%j.out

#SBATCH -e slurm-%x-%j.err

#SBATCH -D /users/sgmaydin/project-code

module purge

module load cuda/12.8.0

echo "Node: $(hostname)"

nvidia-smi

EXE=./cuda-code/build/cuda

CFG=./data/performance/gw_1024x1024/mdp.json

OUT=./results/gw_1024x1024-cuda-h100-1.txt

39

srun "$EXE" "$CFG" > "$OUT" 2>&1

echo "Job completed. Output written to $OUT"

40

Appendix D

Results and Validation

D.1 Example Outputs

D.1.1 Data Output

Listing D.1: Example of the data output from the program showing the optimal policy and
optimal value.

1 Optimal po l i c y : 1 2 2 . . . (t runcated f o r b r ev i ty)
2 Optimal va lue : 0 .000000 0.008266 0.010933 . . . (t runcated f o r b r ev i ty)

D.1.2 Performance Output

Listing D.2: Example of the performance output from the program showing the time taken for
the policy iteration algorithm.

1 Pre c i s i on : FP32 (f l o a t)
2 Using CUDA dev i ce 0 (NVIDIA H100 80GB HBM3)
3 GPU Memory : 80563 MB f r e e / 81089 MB to t a l
4

5 −−− Problem Summary −−−

6 S=262144 , A=4, gamma=0.9
7 Rows (S∗A)=1048576 , nnz=3145720
8 Pol i cy converged a f t e r 111 i t e r a t i o n s .
9

10 −−− Performance Metr ics −−−

11 MDP dimensions : 262144 s ta t e s , 4 a c t i on s
12 Pol i cy i t e r a t i o n s completed : 111
13 GPU computation time : 1950.35 ms

D.2 Correctness Check Script for CUDA and Serial Outputs

To verify correctness, we compare the CUDA implementation’s outputs against the serial baseline
using a lightweight Python script. The script loads two result files whose lines contain (i)
Optimal policy: followed by space-separated integers and (ii) Optimal value: followed by
space-separated floats. It declares success if (a) policies match on at least 95% of states (to
allow for tie-breaking differences), and (b) all value-function entries agree within a numerical
tolerance of 10−4. We use the script in CI to gate changes: it exits with code 0 on success and 1
otherwise.

41

Condensed listing (I/O & comments removed).

1 def load_results_file(path):
2 with open(path , "r") as f:
3 policy_line = None
4 values_line = None
5 for line in f:
6 if line.startswith("Optimal!policy:"):
7 policy_line = line.strip()
8 elif line.startswith("Optimal!value:"):
9 values_line = line.strip()

10 policy = list(map(int , policy_line.split("Optimal!policy:!")[1].
split()))

11 values = list(map(float , values_line.split("Optimal!value:!")
[1]. split ()))

12 return policy , values
13

14 def compare_policies(p1 , p2, thresh =0.95):
15 if len(p1) != len(p2):
16 return False , 0.0
17 matches = sum(1 for a, b in zip(p1, p2) if a == b)
18 rate = matches / len(p1)
19 return rate >= thresh , rate
20

21 def compare_values(v1 , v2, tol=1e-4):
22 if len(v1) != len(v2):
23 return False , 0.0, 0.0, 0.0
24 diffs = [abs(a - b) for a, b in zip(v1, v2)]
25 max_diff = max(diffs) if diffs else 0.0
26 mean_diff = (sum(diffs) / len(diffs)) if diffs else 0.0
27 within = sum(d <= tol for d in diffs) / len(diffs) if diffs else

1.0
28 return (within == 1.0), max_diff , mean_diff , within
29

30 def main(cuda_path , serial_path):
31 c_pol , c_val = load_results_file(cuda_path)
32 s_pol , s_val = load_results_file(serial_path)
33 pol_ok , pol_rate = compare_policies(c_pol , s_pol)
34 val_ok , max_d , mean_d , within = compare_values(c_val , s_val)
35 return 0 if (pol_ok and val_ok) else 1
36

37 if __name__ == "__main__":
38 import sys
39 sys.exit(main(sys.argv[1], sys.argv [2]))

Usage (example). python compare_results.py cuda_results.txt serial_results.txt

42

	Statement of ethical compliance: A0
	Introduction
	Scope
	Problem Statement
	Approach
	Expected Outcomes

	Background
	Theoretical Foundations
	Markov Decision Processes
	Solving Markov Decision Processes With Policy Iteration
	Parallel Computing and GPU Programming

	Cuda Programming Model
	State of the Art: GPU-Accelerated Policy Iteration for MDPs
	Introduction
	GPU vs. CPU Performance for Value/Policy Iteration
	Influence of MDP Structure on GPU Efficiency
	Scaling Out: Multi-GPU and Distributed Solutions
	Other Solution Methods (Beyond Policy Iteration)
	Benchmarking Practices and Reporting Norms
	Conclusion

	Design
	Solving Policy Iteration via GPU Acceleration
	Analyzing Policy Iteration on the GPU
	Parallelization Strategy
	Why CSR format is chosen?
	What is CSR format?
	What are the advantages of CSR format?

	Rationale for Design Choices
	Why sparse grid worlds instead of dense ones?
	Why Jacobi Sweeps instead of Gauss-Seidel?
	Why both cuSPARSE and custom kernels implemented and compared?
	Trade-offs: load balancing, memory traffic, and scalability

	Summary

	Implementation
	Technology Stack
	Implementation through Plain Cuda
	Policy evaluation
	Policy improvement

	Implementation through cuSparse
	Policy evaluation (projected SpMV)
	Policy improvement
	Convergence check and housekeeping

	Evaluation
	Hardware Used
	Data Used in Evaluation
	Correctness Test Configurations
	Performance Test Configurations

	Performance Results
	Interpretation of speed-ups using cuSparse vs plain cuda

	Performance Comparison Between Different GPUs
	Performance Gains Through cuSparse
	Performance Trade-offs
	Limitations
	Future Improvements
	Multi GPU Support
	Comparison with parallel CPU implementations
	Testing on more diverse and larger datasets
	Testing with different types of GPUs

	BCS Criteria and Self-Reflection
	BCS Project Criteria
	Application of Practical and Analytical Skills
	Innovation and Creativity
	Synthesis and Evaluation

	Self Reflection

	Implementation Details
	CSR Input Format
	CSR vs Dense Storage Comparison

	GPU Architecture Notes
	Write–After–Read Hazards

	Experimental Setup
	Barkla Slurm Scripts

	Results and Validation
	Example Outputs
	Data Output
	Performance Output

	Correctness Check Script for CUDA and Serial Outputs

